
Pragmastat: Pragmatic Statistical Toolkit

Andrey Akinshin
andrey.akinshin@gmail.com

Version 3.1.26
DOI: 10.5281/zenodo.17236778

Abstract

This manual presents a toolkit of statistical procedures that provide reliable results across
diverse real-world distributions, with ready-to-use implementations and detailed explanations.
The toolkit consists of renamed, recombined, and refined versions of existing methods. Written
for software developers, mathematicians, and LLMs.

Contents
1 Introduction 3

1.1 Primer . 3
1.2 Breaking changes . 4
1.3 Definitions . 5

2 Summary Estimators 5
2.1 Center . 5
2.2 Spread . 6
2.3 RelSpread . 6
2.4 Shift . 6
2.5 Ratio . 7
2.6 AvgSpread . 7
2.7 Disparity (‘robust effect size’) . 8

3 Distributions 8
3.1 Additive (‘Normal’) . 8
3.2 Multiplic (‘LogNormal’) . 9
3.3 Exponential . 10
3.4 Power (‘Pareto’) . 11
3.5 Uniform . 12

4 Summary Estimator Properties 13
4.1 Breakdown . 14
4.2 Drift . 15
4.3 Invariance . 21

5 Methodology 22
5.1 Desiderata . 22

1

https://doi.org/10.5281/zenodo.17236778

5.2 From Assumptions to Conditions . 23
5.3 From Statistical Efficiency to Drift . 23

6 Algorithms 25
6.1 Fast Center Algorithm . 25
6.2 Fast Spread Algorithm . 32

7 Studies 39
7.1 Additive (‘Normal’) Distribution . 39

8 Reference Implementations 44
8.1 Python . 44
8.2 TypeScript . 45
8.3 R . 47
8.4 .NET . 48
8.5 Kotlin . 49
8.6 Rust . 51
8.7 Go . 52

9 Artifacts 54

2

1 Introduction
1.1 Primer
Given two numeric samples x = (𝑥1, … , 𝑥𝑛) and y = (𝑦1, … , 𝑦𝑚), the toolkit provides the following
primary procedures:

Center(x) = Median
1≤𝑖≤𝑗≤𝑛

((𝑥𝑖 + 𝑥𝑗)/2) — robust average of x

For x = (0, 2, 4, 6, 8):

Center(x) = 4
Center(x + 10) = 14

Center(3x) = 12

Spread(x) = Median
1≤𝑖<𝑗≤𝑛

|𝑥𝑖 − 𝑥𝑗| — robust dispersion of x

For x = (0, 2, 4, 6, 8):

Spread(x) = 4
Spread(x + 10) = 4

Spread(2x) = 8

RelSpread(x) = Spread(x)/ |Center(x)| — robust relative dispersion of x

For x = (0, 2, 4, 6, 8):

RelSpread(x) = 1
RelSpread(5x) = 1

Shift(x, y) = Median
1≤𝑖≤𝑛,1≤𝑗≤𝑚

(𝑥𝑖 − 𝑦𝑗) — robust signed difference (x − y)

For x = (0, 2, 4, 6, 8) and y = (10, 12, 14, 16, 18):

Shift(x, y) = −10
Shift(x, x) = 0

Shift(x + 7, y + 3) = −6
Shift(2x, 2y) = −20

Shift(y, x) = 10

Ratio(x, y) = Median
1≤𝑖≤𝑛,1≤𝑗≤𝑚

(𝑥𝑖/𝑦𝑗) — robust ratio (x/y)

For x = (1, 2, 4, 8, 16) and y = (2, 4, 8, 16, 32):

Ratio(x, y) = 0.5
Ratio(x, x) = 1

Ratio(2x, 5y) = 0.2

3

AvgSpread(x, y) = (𝑛 Spread(x) + 𝑚 Spread(y))/(𝑛 + 𝑚) — robust average spread of x and y

For x = (0, 3, 6, 9, 12) and y = (0, 2, 4, 6, 8):

Spread(x) = 6
Spread(y) = 4

AvgSpread(x, y) = 5
AvgSpread(x, x) = 6

AvgSpread(2x, 3x) = 15
AvgSpread(y, x) = 5

AvgSpread(2x, 2y) = 10

Disparity(x, y) = Shift(x, y)/ AvgSpread(x, y) — robust effect size between x and y

For x = (0, 3, 6, 9, 12) and y = (0, 2, 4, 6, 8):

Shift(x, y) = 2
AvgSpread(x, y) = 5

Disparity(x, y) = 0.4
Disparity(x + 5, y + 5) = 0.4

Disparity(2x, 2y) = 0.4
Disparity(y, x) = −0.4

These procedures are designed to serve as default choices for routine analysis and comparison
tasks in engineering contexts. The toolkit has ready-to-use implementations for Python, Type-
Script/JavaScript, R, .NET, Kotlin, Rust, and Go.

1.2 Breaking changes
Statistical practice has evolved through decades of research and teaching, creating a system where
historical naming conventions became permanently embedded in textbooks and standard practice.
Traditional statistics often names procedures after their discoverers or uses arbitrary symbols that
reveal nothing about their actual purpose or application context. This approach forces practitioners
to memorize meaningless mappings between historical figures and mathematical concepts.

The result is unnecessary friction for anyone learning or applying statistical methods. Beginners
face an inconsistent landscape of confusing names, fragile defaults, and incompatible approaches
with little guidance on selection or interpretation. Modern practitioners would benefit from a more
consistent system, which requires some renaming and redefining. This manual breaks from the
traditions, offering a coherent system designed for clarity and practical use.

• Renamed distributions:
– Additive (former ‘Normal’ or ‘Gaussian’)
– Multiplic (former ‘Log-Normal’ or ‘Galton’)
– Power (former ‘Pareto’)

• Primary measure of average: Center (instead of Mean)
• Primary measure of dispersion: Spread (instead of StdDev)

4

• Primary measure of effect size: Disparity (instead of Cohen’s 𝑑)
• Reworked statistical efficiency (see section “Drift”)

1.3 Definitions
• 𝑋, 𝑌 : random variables, can be treated as generators of random real measurements

– 𝑋 ∼ Distribution defines a distribution from which this variable comes
• 𝑥𝑖, 𝑦𝑗: specific individual measurements
• x = (𝑥1, 𝑥2, … , 𝑥𝑛), y = (𝑦1, 𝑦2, … , 𝑦𝑚): samples of measurements of a given size

– Samples are non-empty: 𝑛, 𝑚 ≥ 1
• 𝑥(1), 𝑥(2), … , 𝑥(𝑛): sorted measurements of the sample (‘order statistics’)
• Asymptotic case: the sample size goes to infinity 𝑛, 𝑚 → ∞

– Can typically be treated as an approximation for large samples
• Estimator(x): a function that estimates the property of a distribution from given measure-

ments
– Estimator[𝑋] shows the true property value of the distribution (asymptotic value)

• Median: an estimator that finds the value splitting the distribution into two equal parts

Median(x) = {𝑥((𝑛+1)/2) if 𝑛 is odd
𝑥(𝑛/2)+𝑥(𝑛/2+1)

2 if 𝑛 is even

2 Summary Estimators
The following sections introduce definitions of one-sample and two-sample summary estimators.
Later sections will evaluate properties of these estimators and applicability to different conditions.

2.1 Center

Center(x) = Median
1≤𝑖≤𝑗≤𝑛

(𝑥𝑖 + 𝑥𝑗
2)

• Measures average (central tendency, measure of location)
• Equals the Hodges-Lehmann estimator ((Hodges and Lehmann 1963), (Sen 1963)), renamed

to Center for clarity
• Also known as ‘pseudomedian’ because it is consistent with Median for symmetric distribu-

tions
• Pragmatic alternative to Mean and Median
• Asymptotically, Center[𝑋] is the Median of the arithmetic average of two random measure-

ments from 𝑋
• Straightforward implementations have 𝑂(𝑛2 log 𝑛) complexity; a fast 𝑂(𝑛 log 𝑛) version is

provided in the Algorithms section.
• Domain: any real numbers
• Unit: the same as measurements

Center(x + 𝑘) = Center(x) + 𝑘

Center(𝑘 ⋅ x) = 𝑘 ⋅ Center(x)

5

2.2 Spread
Spread(x) = Median

1≤𝑖<𝑗≤𝑛
|𝑥𝑖 − 𝑥𝑗|

• Measures dispersion (variability, scatter)
• Corner case: for 𝑛 = 1, Spread(x) = 0
• Equals the Shamos scale estimator ((Shamos 1976)), renamed to Spread for clarity
• Pragmatic alternative to the standard deviation and the median absolute deviation
• Asymptotically, Spread[𝑋] is the median of the absolute difference of two random measure-

ments from 𝑋
• Straightforward implementations have 𝑂(𝑛2 log 𝑛) complexity; a fast 𝑂(𝑛 log 𝑛) version is

provided in the Algorithms section.
• Domain: any real numbers
• Unit: the same as measurements

Spread(x + 𝑘) = Spread(x)

Spread(𝑘 ⋅ x) = |𝑘| ⋅ Spread(x)

Spread(x) ≥ 0

2.3 RelSpread

RelSpread(x) = Spread(x)
|Center(x)|

• Measures the relative dispersion of a sample to Center(x)
• Pragmatic alternative to the coefficient of variation
• Domain: Center(x) ≠ 0
• Unit: relative

RelSpread(𝑘 ⋅ x) = RelSpread(x)

RelSpread(x) ≥ 0

2.4 Shift
Shift(x, y) = Median

1≤𝑖≤𝑛, 1≤𝑗≤𝑚
(𝑥𝑖 − 𝑦𝑗)

• Measures the median of pairwise differences between elements of two samples
• Equals the Hodges-Lehmann estimator for two samples ((Hodges and Lehmann 1963))
• Asymptotically, Shift[𝑋, 𝑌] is the median of the difference of random measurements from 𝑋

and 𝑌
• Domain: any real numbers
• Unit: the same as measurements

6

Shift(x, x) = 0

Shift(x + 𝑘𝑥, y + 𝑘𝑦) = Shift(x, y) + 𝑘𝑥−𝑘𝑦

Shift(𝑘 ⋅ x, 𝑘 ⋅ y) = 𝑘 ⋅ Shift(x, y)

Shift(x, y) = − Shift(y, x)

2.5 Ratio

Ratio(x, y) = Median
1≤𝑖≤𝑛,1≤𝑗≤𝑚

(𝑥𝑖
𝑦𝑗

)

• Measures the median of pairwise ratios between elements of two samples
• Asymptotically, Ratio[𝑋, 𝑌] is the median of the ratio of random measurements from 𝑋 and

𝑌
• Note: Ratio(x, y) ≠ 1/ Ratio(y, x) in general (example: 𝑥 = (1, 100), 𝑦 = (1, 10))
• Practical Domain: 𝑥𝑖, 𝑦𝑗 > 0 or 𝑥𝑖, 𝑦𝑗 < 0. In practice, exclude values with |𝑦𝑗| near zero.
• Unit: relative

Ratio(x, x) = 1

Ratio(𝑘𝑥 ⋅ x, 𝑘𝑦 ⋅ y) = 𝑘𝑥
𝑘𝑦

⋅ Ratio(x, y)

2.6 AvgSpread

AvgSpread(x, y) = 𝑛 Spread(x) + 𝑚 Spread(y)
𝑛 + 𝑚

• Measures average dispersion across two samples
• Pragmatic alternative to the ‘pooled standard deviation’
• Note: AvgSpread(x, y) ≠ Spread(x ∪ y) in general (defines a pooled scale, not the spread of

the concatenated sample)
• Domain: any real numbers
• Unit: the same as measurements

AvgSpread(x, x) = Spread(x)

AvgSpread(𝑘1 ⋅ x, 𝑘2 ⋅ x) = |𝑘1| + |𝑘2|
2 ⋅ Spread(x)

AvgSpread(x, y) = AvgSpread(y, x)

7

AvgSpread(𝑘 ⋅ x, 𝑘 ⋅ y) = |𝑘| ⋅ AvgSpread(x, y)

2.7 Disparity (‘robust effect size’)

Disparity(x, y) = Shift(x, y)
AvgSpread(x, y)

• Measures a normalized Shift between x and y expressed in spread units
• Expresses the ‘effect size’, renamed to Disparity for clarity
• Pragmatic alternative to Cohen’s d (note: exact estimates differ due to robust construction)
• Domain: AvgSpread(x, y) > 0
• Unit: spread unit

Disparity(x + 𝑘, y + 𝑘) = Disparity(x, y)

Disparity(𝑘⋅x, 𝑘⋅y) = sign(𝑘)⋅Disparity(x, y)

Disparity(x, y) = − Disparity(y, x)

3 Distributions
This section defines the distributions used throughout the manual.

3.1 Additive (‘Normal’)
Additive(mean, stdDev)

• mean: location parameter (center of the distribution), consistent with Center
• stdDev: scale parameter (standard deviation), can be rescaled to Spread

8

• Formation: the sum of many variables 𝑋1 + 𝑋2 + … + 𝑋𝑛 under mild CLT (Central Limit
Theorem) conditions (e.g., Lindeberg-Feller).

• Origin: historically called ‘Normal’ or ‘Gaussian’ distribution after Carl Friedrich Gauss and
others.

• Rename Motivation: renamed to Additive to reflect its formation mechanism through
addition.

• Properties: symmetric, bell-shaped, characterized by central limit theorem convergence.
• Applications: measurement errors, heights and weights in populations, test scores, temper-

ature variations.
• Characteristics: symmetric around the mean, light tails, finite variance.
• Caution: no perfectly additive distributions exist; all real data contain some deviations.

Traditional estimators like Mean and StdDev lack robustness to outliers; use them only when
strong evidence supports small deviations from additivity with no extreme measurements.

3.2 Multiplic (‘LogNormal’)
Multiplic(logMean, logStdDev)

• logMean: mean of log values (location parameter; 𝑒logMean equals the geometric mean)
• logStdDev: standard deviation of log values (scale parameter; controls multiplicative spread)

9

• Formation: the product of many positive variables 𝑋1 ⋅ 𝑋2 ⋅ … ⋅ 𝑋𝑛 with mild conditions
(e.g., finite variance of log 𝑋).

• Origin: historically called ‘Log-Normal’ or ‘Galton’ distribution after Francis Galton.
• Rename Motivation: renamed to Multiplic to reflect its formation mechanism through

multiplication.
• Properties: logarithm of a Multiplic (‘LogNormal’) variable follows an Additive (‘Normal’)

distribution.
• Applications: stock prices, file sizes, reaction times, income distributions, biological growth

rates.
• Caution: no perfectly multiplic distributions exist; all real data contain some deviations.

Traditional estimators may struggle with the inherent skewness and heavy right tail.

3.3 Exponential
Exp(rate)

• rate: rate parameter (𝜆 > 0, controls decay speed; mean = 1/rate)

10

• Formation: the waiting time between events in a Poisson process.
• Origin: naturally arises from memoryless processes where the probability of an event occur-

ring is constant over time.
• Properties: memoryless (past events do not affect future probabilities).
• Applications: time between failures, waiting times in queues, radioactive decay, customer

service times.
• Characteristics: always positive, right-skewed with light (exponential) tail.
• Caution: extreme skewness makes traditional location estimators like Mean unreliable; ro-

bust estimators provide more stable results.

3.4 Power (‘Pareto’)
Power(min, shape)

• min: minimum value (lower bound, min > 0)
• shape: shape parameter (𝛼 > 0, controls tail heaviness; smaller values = heavier tails)

11

• Formation: follows a power-law relationship where large values are rare but possible.
• Origin: historically called ‘Pareto’ distribution after Vilfredo Pareto’s work on wealth distri-

bution.
• Rename Motivation: renamed to Power to reflect connection with power-law.
• Properties: exhibits scale invariance and extremely heavy tails.
• Applications: wealth distribution, city population sizes, word frequencies, earthquake mag-

nitudes, website traffic.
• Characteristics: infinite variance for many parameter values, extreme outliers common.
• Caution: traditional variance-based estimators completely fail; robust estimators essential

for reliable analysis.

3.5 Uniform
Uniform(min, max)

• min: lower bound of the support interval
• max: upper bound of the support interval (max > min)

12

• Formation: all values within a bounded interval have equal probability.
• Origin: represents complete uncertainty within known bounds.
• Properties: rectangular probability density, finite support with hard boundaries.
• Applications: random number generation, round-off errors, arrival times within known

intervals.
• Characteristics: symmetric, bounded, no tail behavior.
• Note: traditional estimators work reasonably well due to symmetry and bounded nature.

4 Summary Estimator Properties
This section compares the toolkit’s robust estimators against traditional statistical methods to
demonstrate their advantages and universally good properties. While traditional estimators often
work well under ideal conditions, the toolkit estimators maintain reliable performance across diverse
real-world scenarios.

Average Estimators:

Mean (arithmetic average):

Mean(x) = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

Median:

Median(x) = {𝑥((𝑛+1)/2) if 𝑛 is odd
𝑥(𝑛/2)+𝑥(𝑛/2+1)

2 if 𝑛 is even

13

Center (Hodges-Lehmann estimator):

Center(x) = Median
1≤𝑖≤𝑗≤𝑛

(𝑥𝑖 + 𝑥𝑗
2)

Dispersion Estimators:

Standard Deviation:

StdDev(x) = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − Mean(x))2

Median Absolute Deviation (around the median):

MAD(x) = Median(|𝑥𝑖 − Median(x)|)

Spread (Shamos scale estimator):

Spread(x) = Median
1≤𝑖<𝑗≤𝑛

|𝑥𝑖 − 𝑥𝑗|

4.1 Breakdown
Heavy-tailed distributions naturally produce extreme outliers that completely distort traditional
estimators. A single extreme measurement from the Power distribution can make the sample mean
arbitrarily large. Real-world data also contains corrupted measurements from instrument failures,
recording errors, or transmission problems. Both natural extremes and data corruption create the
same challenge: how to extract reliable information when some measurements are too influential.

The breakdown point is the fraction of the sample that can be replaced by arbitrarily large values
without making the estimator arbitrarily large. The theoretical maximum is 50% — no estimator
can guarantee reliable results when more than half the measurements are extreme or corrupted. In
such cases, summary estimators are not applicable; a more sophisticated approach is needed.

Even 50% is rarely needed in practice; more conservative breakdown points also cover practical
needs. Also, when the breakdown point is high, the precision is low (we lose information by
neglecting part of the data). The optimal practical breakdown point should be somewhere between
0% (no robustness) and 50% (low precision).

The Center and Spread estimators achieve 29% breakdown points, providing substantial protection
against realistic contamination levels while maintaining good precision. Below is a comparison with
traditional estimators.

Asymptotic breakdown points for average estimators:

Mean Median Center
0% 50% 29%

Asymptotic breakdown points for dispersion estimators:

14

StdDev MAD Spread
0% 50% 29%

4.2 Drift
Drift measures estimator precision by quantifying how much estimates scatter across repeated
samples. It is based on Spread of the estimates, and therefore has a breakdown point of ≈ 29%.

Drift is useful when comparing precisions of several estimators. To simplify the comparison, it is
convenient to choose one of the estimators as a baseline. A table with drift squares normalized by
the baseline shows the sample size adjustment factor for switching from the baseline to another
estimator. For example, if Center is the baseline, and the rescaled drift square of Median is 1.5, this
means that Median would require 1.5 times more data than Center to achieve the same precision.
See the “From Statistical Efficiency to Drift” section for details.

Asymptotic Average estimator drift² (values are approximated):

Mean Median Center
Additive 1.0 1.571 1.047
Multiplic 3.95 1.40 1.7
Exp 1.88 1.88 1.69
Power ∞ 0.9 2.1
Uniform 0.88 2.60 0.94

Rescaled to Center (sample size adjustment factors):

Mean Median Center
Additive 0.96 1.50 1.0
Multiplic 2.32 0.82 1.0
Exp 1.11 1.11 1.0
Power ∞ 0.43 1.0
Uniform 0.936 2.77 1.0

15

16

17

Asymptotic Dispersion estimator drift² (values are approximated):

StdDev MAD Spread
Additive 0.45 1.22 0.52
Multiplic ∞ 2.26 1.81
Exp 1.69 1.92 1.26
Power ∞ 3.5 4.4
Uniform 0.18 0.90 0.43

Rescaled to Spread (sample size adjustment factors):

StdDev MAD Spread
Additive 0.87 2.35 1.0
Multiplic ∞ 1.25 1.0
Exp 1.34 1.52 1.0
Power ∞ 0.80 1.0
Uniform 0.42 2.09 1.0

18

19

20

4.3 Invariance
Invariance properties determine how estimators respond to data transformations. These properties
are crucial for analysis design and interpretation:

• Location-invariant estimators are invariant to additive shifts: 𝑇 (x + 𝑘) = 𝑇 (x)
• Scale-invariant estimators are invariant to positive rescaling: 𝑇 (𝑘 ⋅ x) = 𝑇 (x) for 𝑘 > 0
• Equivariant estimators change predictably with transformations, maintaining relative rela-

tionships

Choosing estimators with appropriate invariance properties ensures that results remain meaningful
across different measurement scales, units, and data transformations. For example, when comparing
datasets collected with different instruments or protocols, location-invariant estimators eliminate
the need for data centering, while scale-invariant estimators eliminate the need for normalization.

Location-invariance: An estimator 𝑇 is location-invariant if adding constants to the measure-
ments leaves the result unchanged:

𝑇 (x + 𝑘) = 𝑇 (x)

𝑇 (x + 𝑘, y + 𝑘) = 𝑇 (x, y)

Location-equivariance: An estimator 𝑇 is location-equivariant if it shifts with the data:

21

𝑇 (x + 𝑘) = 𝑇 (x) + 𝑘

𝑇 (x + 𝑘1, y + 𝑘2) = 𝑇 (x, y) + 𝑓(𝑘1, 𝑘2)

Scale-invariance: An estimator 𝑇 is scale-invariant if multiplying by a positive constant leaves
the result unchanged:

𝑇 (𝑘 ⋅ x) = 𝑇 (x) for 𝑘 > 0

𝑇 (𝑘 ⋅ x, 𝑘 ⋅ y) = 𝑇 (x, y) for 𝑘 > 0

Scale-equivariance: An estimator 𝑇 is scale-equivariant if it scales proportionally with the data:

𝑇 (𝑘 ⋅ x) = 𝑘 ⋅ 𝑇 (x) or |𝑘| ⋅ 𝑇 (x) for 𝑘 ≠ 0

𝑇 (𝑘 ⋅ x, 𝑘 ⋅ y) = 𝑘 ⋅ 𝑇 (x, y) or |𝑘| ⋅ 𝑇 (x, y) for 𝑘 ≠ 0

Location Scale
Center Equivariant Equivariant
Spread Invariant Equivariant
RelSpread – Invariant
Shift Invariant Equivariant
Ratio – Invariant
AvgSpread Invariant Equivariant
Disparity Invariant Invariant

5 Methodology
This chapter examines the methodological principles that guide the toolkit’s design and application.

5.1 Desiderata
The toolkit consists of statistical procedures — practical methods that transform raw measurements
into actionable insights and decisions. When practitioners face real-world problems involving data
analysis, their success depends on selecting the right procedure for each specific situation. Conve-
nient and efficient procedures have the following desired properties:

• Usability. Procedures should feel natural to practitioners and minimize opportunities for
misuse. They should be mathematically elegant yet accessible to readers with standard math-
ematical backgrounds. Implementation should be straightforward across programming lan-
guages. Like well-designed APIs, these procedures should follow intuitive design principles
that reduce cognitive load.

22

• Reliability. Procedures should deliver consistent, trustworthy results, even in the presence
of noise, data corruption, and extreme outliers.

• Applicability. Procedures should perform well across diverse contexts and sample sizes.
They should handle the full spectrum of distributions commonly encountered in practice, from
ideal theoretical models to data that deviates significantly from any assumed distribution.

This manual introduces a unified toolkit that aims to satisfy these properties and provide reliable
rule-of-thumb procedures for everyday analytical tasks.

5.2 From Assumptions to Conditions
Traditional statistical practice starts with model assumptions, then derives optimal procedures un-
der those assumptions. This approach works backward from mathematical convenience to practical
application. Practitioners don’t know the distribution in advance, so they lack clear guidance on
which procedure to choose by default.

Most traditional statistical procedures rely heavily on the Additive (‘Normal’) distribution and fail
on real data because actual measurements contain outliers, exhibit skewness, or follow unknown
distributions. When assumptions fail, procedures designed for those assumptions also fail.

This toolkit starts with procedures and tests how they perform under different distributional condi-
tions. This approach reverses the traditional workflow: instead of deriving procedures from assump-
tions, we evaluate how each procedure performs across various distributions. This enables direct
comparison and provides clear guidance on procedure selection based on known characteristics of
the data source.

This procedure-first approach eliminates the need for complex mathematical derivations. All eval-
uations can be done numerically through Monte Carlo simulation. Generate samples from each
distribution, apply each procedure, and measure the results. The numerical evidence directly
shows which procedures work best under which conditions.

5.3 From Statistical Efficiency to Drift
Statistical efficiency measures estimator precision. When multiple estimators target the same quan-
tity, efficiency determines which provides more reliable results.

Efficiency measures how tightly estimates cluster around the true value across repeated samples.
For an estimator 𝑇 applied to samples from distribution 𝑋, absolute efficiency is defined relative
to the optimal estimator 𝑇 ∗:

Efficiency(𝑇 , 𝑋) = Var[𝑇 ∗(𝑋1, … , 𝑋𝑛)]
Var[𝑇 (𝑋1, … , 𝑋𝑛)]

Relative efficiency compares two estimators by taking the ratio of their variances:

RelativeEfficiency(𝑇1, 𝑇2, 𝑋) = Var[𝑇2(𝑋1, … , 𝑋𝑛)]
Var[𝑇1(𝑋1, … , 𝑋𝑛)]

Under Additive (‘Normal’) distributions, this approach works well. The sample mean achieves
optimal efficiency, while the median operates at roughly 64% efficiency.

23

However, this variance-based definition creates four critical limitations:

• Absolute efficiency requires knowing the optimal estimator, which is often difficult to deter-
mine. For many distributions, deriving the minimum variance unbiased estimator requires
complex mathematical analysis. Without this reference point, absolute efficiency cannot be
computed.

• Relative efficiency only compares estimator pairs, preventing systematic evaluation. This
limits understanding of how multiple estimators perform relative to each other. Practitioners
cannot rank estimators comprehensively or evaluate individual performance in isolation.

• The approach depends on variance calculations that break down when variance becomes
infinite or when distributions have heavy tails. Many real-world distributions, such as those
with power-law tails, exhibit infinite variance. When the variance is undefined, efficiency
comparisons become impossible.

• Variance lacks robustness to outliers, which can corrupt efficiency calculations. A single
extreme observation can greatly inflate variance estimates. This sensitivity can make efficient
estimators look inefficient and vice versa.

The Drift concept provides a robust alternative. Drift measures estimator precision using Spread
instead of variance, providing reliable comparisons across a wide range of distributions.

For an average estimator 𝑇 , random variable 𝑋, and sample size 𝑛:

AvgDrift(𝑇 , 𝑋, 𝑛) =
√𝑛 Spread [𝑇 (𝑋1, … , 𝑋𝑛)]

Spread[𝑋]

This formula measures estimator variability compared to data variability. Spread [𝑇 (𝑋1, … , 𝑋𝑛)]
captures the median absolute difference between estimates across repeated samples. Multiplying by√𝑛 removes sample size dependency, making drift values comparable across different study sizes.
Dividing by Spread[𝑋] creates a scale-free measure that provides consistent drift values across
different distribution parameters and measurement units.

Dispersion estimators use a parallel formulation:

DispDrift(𝑇 , 𝑋, 𝑛) = √𝑛 RelSpread [𝑇 (𝑋1, … , 𝑋𝑛)]

Here RelSpread normalizes by the estimator’s typical value for fair comparison.

Drift offers four key advantages:

• For estimators with
√𝑛 convergence rate, drift remains finite and comparable across distri-

butions; for heavier tails, drift may diverge, flagging estimator instability.
• It provides absolute precision measures rather than only pairwise comparisons.
• The robust Spread foundation resists outlier distortion that corrupts variance-based calcula-

tions.
• The

√𝑛 normalization makes drift values comparable across different sample sizes, enabling
direct comparison of estimator performance regardless of study size.

Under Additive (‘Normal’) conditions, drift matches traditional efficiency. The sample mean
achieves drift near 1.0; the median achieves drift around 1.25. This consistency validates drift

24

as a proper generalization of efficiency that extends to realistic data conditions where traditional
efficiency fails.

When switching from one estimator to another while maintaining the same precision, the required
sample size adjustment follows:

𝑛new = 𝑛original ⋅ Drift2(𝑇2, 𝑋)
Drift2(𝑇1, 𝑋)

This applies when estimator 𝑇1 has lower drift than 𝑇2.

The ratio of squared drifts determines the data requirement change. If 𝑇2 has drift 1.5 times higher
than 𝑇1, then 𝑇2 requires (1.5)2 = 2.25 times more data to match 𝑇1’s precision. Conversely,
switching to a more precise estimator allows smaller sample sizes.

For asymptotic analysis, Drift(𝑇 , 𝑋) denotes the limiting value as 𝑛 → ∞. With a baseline estima-
tor, rescaled drift values enable direct comparisons:

Driftbaseline(𝑇 , 𝑋) = Drift(𝑇 , 𝑋)
Drift (𝑇baseline, 𝑋)

The standard drift definition assumes
√𝑛 convergence rates typical under Additive (‘Normal’)

conditions. For broader applicability, drift generalizes to:

AvgDrift(𝑇 , 𝑋, 𝑛) = 𝑛instability Spread [𝑇 (𝑋1, … , 𝑋𝑛)]
Spread[𝑋]

DispDrift(𝑇 , 𝑋, 𝑛) = 𝑛instability RelSpread [𝑇 (𝑋1, … , 𝑋𝑛)]

The instability parameter adapts to estimator convergence rates. The toolkit uses instability = 1/2
throughout because this choice provides natural intuition and mental representation for the Additive
(‘Normal’) distribution. Rather than introduce additional complexity through variable instability
parameters, the fixed

√𝑛 scaling offers practical convenience while maintaining theoretical rigor for
the distribution classes most common in applications.

6 Algorithms
This chapter describes the core algorithms that power the robust estimators in the toolkit. Both
algorithms solve a fundamental computational challenge: how to efficiently find medians within
large collections of derived values without materializing the entire collection in memory.

6.1 Fast Center Algorithm
The Center estimator computes the median of all pairwise averages from a sample. Given a dataset
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), this estimator is defined as:

Center(x) = Median
1≤𝑖≤𝑗≤𝑛

(𝑥𝑖 + 𝑥𝑗
2)

25

A direct implementation would generate all 𝑛(𝑛+1)
2 pairwise averages and sort them. With 𝑛 =

10, 000, this creates approximately 50 million values, requiring quadratic memory and 𝑂(𝑛2 log 𝑛)
time.

The breakthrough came in 1984 when John Monahan developed an algorithm that reduces expected
complexity to 𝑂(𝑛 log 𝑛) while using only linear memory (see (Monahan 1984)). The algorithm
exploits the inherent structure in pairwise sums rather than computing them explicitly. After
sorting the input values 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, consider the implicit upper triangular matrix 𝑀 where
𝑀𝑖,𝑗 = 𝑥𝑖 + 𝑥𝑗 for 𝑖 ≤ 𝑗. This matrix has crucial properties: each row and column are sorted
in non-decreasing order, enabling efficient median selection without materializing the quadratic
structure.

Rather than sorting all pairwise sums, the algorithm uses a selection approach similar to quickselect.
The process maintains search bounds for each matrix row and iteratively narrows the search space.
For each row 𝑖, the algorithm tracks active column indices from 𝑖 + 1 to 𝑛, defining which pairwise
sums remain candidates for the median. It selects a candidate sum as a pivot using randomized
selection from active matrix elements, then counts how many pairwise sums fall below the pivot.
Because both rows and columns are sorted, this counting takes only 𝑂(𝑛) time using a two-pointer
sweep from the matrix’s upper-right corner.

The median corresponds to rank 𝑘 = ⌊𝑁+1
2 ⌋ where 𝑁 = 𝑛(𝑛+1)

2 . If fewer than 𝑘 sums lie below
the pivot, the median must be larger; if more than 𝑘 sums lie below the pivot, the median must
be smaller. Based on this comparison, the algorithm eliminates portions of each row that cannot
contain the median, shrinking the active search space while preserving the true median.

Real data often contains repeated values, which can cause the selection process to stall. When
the algorithm detects no progress between iterations, it switches to a midrange strategy: find the
smallest and largest pairwise sums still in the search space, then use their average as the next pivot.
If the minimum equals the maximum, all remaining candidates are identical and the algorithm
terminates. This tie-breaking mechanism ensures reliable convergence with discrete or duplicated
data.

The algorithm achieves 𝑂(𝑛 log 𝑛) time complexity through linear partitioning (each pivot evalu-
ation requires only 𝑂(𝑛) operations) and logarithmic iterations (randomized pivot selection leads
to expected 𝑂(log 𝑛) iterations, similar to quickselect). The algorithm maintains only row bounds
and counters, using 𝑂(𝑛) additional space regardless of the number of pairwise sums. This matches
the complexity of sorting a single array while avoiding the quadratic explosion of materializing all
pairwise combinations.

namespace Pragmastat.Algorithms;

internal static class FastCenterAlgorithm
{

/// <summary>
/// ACM Algorithm 616: fast computation of the Hodges-Lehmann location

estimator↪

/// </summary>
/// <remarks>
/// Computes the median of all pairwise averages (xi + xj)/2 efficiently.
/// See: John F Monahan, "Algorithm 616: fast computation of the

Hodges-Lehmann location estimator"↪

26

/// (1984) DOI: 10.1145/1271.319414
/// </remarks>
/// <param name="values">A sorted sample of values</param>
/// <param name="random">Random number generator</param>
/// <param name="isSorted">If values are sorted</param>
/// <returns>Exact center value (Hodges-Lehmann estimator)</returns>
public static double Estimate(IReadOnlyList<double> values, Random? random =

null, bool isSorted = false)↪

{
int n = values.Count;
if (n == 1) return values[0];
if (n == 2) return (values[0] + values[1]) / 2;
random ??= new Random();
if (!isSorted)

values = values.OrderBy(x => x).ToList();

// Calculate target median rank(s) among all pairwise sums
long totalPairs = (long)n * (n + 1) / 2;
long medianRankLow = (totalPairs + 1) / 2; // For odd totalPairs, this is

the median↪

long medianRankHigh =
(totalPairs + 2) / 2; // For even totalPairs, average of ranks

medianRankLow and medianRankHigh↪

// Initialize search bounds for each row in the implicit matrix
long[] leftBounds = new long[n];
long[] rightBounds = new long[n];
long[] partitionCounts = new long[n];

for (int i = 0; i < n; i++)
{

leftBounds[i] = i + 1; // Row i can pair with columns [i+1..n]
(1-based indexing)↪

rightBounds[i] = n; // Initially, all columns are available
}

// Start with a good pivot: sum of middle elements (handles both odd and
even n)↪

double pivot = values[(n - 1) / 2] + values[n / 2];
long activeSetSize = totalPairs;
long previousCount = 0;

while (true)
{

// === PARTITION STEP ===
// Count pairwise sums less than current pivot
long countBelowPivot = 0;
long currentColumn = n;

27

for (int row = 1; row <= n; row++)
{

partitionCounts[row - 1] = 0;

// Move left from current column until we find sums < pivot
// This exploits the sorted nature of the matrix
while (currentColumn >= row && values[row - 1] +

values[(int)currentColumn - 1] >= pivot)↪

currentColumn--;

// Count elements in this row that are < pivot
if (currentColumn >= row)
{

long elementsBelow = currentColumn - row + 1;
partitionCounts[row - 1] = elementsBelow;
countBelowPivot += elementsBelow;

}
}

// === CONVERGENCE CHECK ===
// If no progress, we have ties - break them using midrange strategy
if (countBelowPivot == previousCount)
{

double minActiveSum = double.MaxValue;
double maxActiveSum = double.MinValue;

// Find the range of sums still in the active search space
for (int i = 0; i < n; i++)
{

if (leftBounds[i] > rightBounds[i]) continue; // Skip empty
rows↪

double rowValue = values[i];
double smallestInRow = values[(int)leftBounds[i] - 1] +

rowValue;↪

double largestInRow = values[(int)rightBounds[i] - 1] +
rowValue;↪

minActiveSum = Min(minActiveSum, smallestInRow);
maxActiveSum = Max(maxActiveSum, largestInRow);

}

pivot = (minActiveSum + maxActiveSum) / 2;
if (pivot <= minActiveSum || pivot > maxActiveSum) pivot =

maxActiveSum;↪

// If all remaining values are identical, we're done

28

if (minActiveSum == maxActiveSum || activeSetSize <= 2)
return pivot / 2;

continue;
}

// === TARGET CHECK ===
// Check if we've found the median rank(s)
bool atTargetRank = countBelowPivot == medianRankLow ||

countBelowPivot == medianRankHigh - 1;↪

if (atTargetRank)
{

// Find the boundary values: largest < pivot and smallest >=
pivot↪

double largestBelowPivot = double.MinValue;
double smallestAtOrAbovePivot = double.MaxValue;

for (int i = 1; i <= n; i++)
{

long countInRow = partitionCounts[i - 1];
double rowValue = values[i - 1];
long totalInRow = n - i + 1;

// Find largest sum in this row that's < pivot
if (countInRow > 0)
{

long lastBelowIndex = i + countInRow - 1;
double lastBelowValue = rowValue +

values[(int)lastBelowIndex - 1];↪

largestBelowPivot = Max(largestBelowPivot,
lastBelowValue);↪

}

// Find smallest sum in this row that's >= pivot
if (countInRow < totalInRow)
{

long firstAtOrAboveIndex = i + countInRow;
double firstAtOrAboveValue = rowValue +

values[(int)firstAtOrAboveIndex - 1];↪

smallestAtOrAbovePivot = Min(smallestAtOrAbovePivot,
firstAtOrAboveValue);↪

}
}

// Calculate final result based on whether we have odd or even
number of pairs↪

if (medianRankLow < medianRankHigh)
{

29

// Even total: average the two middle values
return (smallestAtOrAbovePivot + largestBelowPivot) / 4;

}
else
{

// Odd total: return the single middle value
bool needLargest = countBelowPivot == medianRankLow;
return (needLargest ? largestBelowPivot :

smallestAtOrAbovePivot) / 2;↪

}
}

// === UPDATE BOUNDS ===
// Narrow the search space based on partition result
if (countBelowPivot < medianRankLow)
{

// Too few values below pivot - eliminate smaller values, search
higher↪

for (int i = 0; i < n; i++)
leftBounds[i] = i + partitionCounts[i] + 1;

}
else
{

// Too many values below pivot - eliminate larger values, search
lower↪

for (int i = 0; i < n; i++)
rightBounds[i] = i + partitionCounts[i];

}

// === PREPARE NEXT ITERATION ===
previousCount = countBelowPivot;

// Recalculate how many elements remain in the active search space
activeSetSize = 0;
for (int i = 0; i < n; i++)
{

long rowSize = rightBounds[i] - leftBounds[i] + 1;
activeSetSize += Max(0, rowSize);

}

// Choose next pivot based on remaining active set size
if (activeSetSize > 2)
{

// Use randomized row median strategy for efficiency
// Handle large activeSetSize by using double precision for

random selection↪

double randomFraction = random.NextDouble();
long targetIndex = (long)(randomFraction * activeSetSize);

30

int selectedRow = 0;

// Find which row contains the target index
long cumulativeSize = 0;
for (int i = 0; i < n; i++)
{

long rowSize = Max(0, rightBounds[i] - leftBounds[i] + 1);
if (targetIndex < cumulativeSize + rowSize)
{

selectedRow = i;
break;

}

cumulativeSize += rowSize;
}

// Use median element of the selected row as pivot
long medianColumnInRow = (leftBounds[selectedRow] +

rightBounds[selectedRow]) / 2;↪

pivot = values[selectedRow] + values[(int)medianColumnInRow - 1];
}
else
{

// Few elements remain - use midrange strategy
double minRemainingSum = double.MaxValue;
double maxRemainingSum = double.MinValue;

for (int i = 0; i < n; i++)
{

if (leftBounds[i] > rightBounds[i]) continue; // Skip empty
rows↪

double rowValue = values[i];
double minInRow = values[(int)leftBounds[i] - 1] + rowValue;
double maxInRow = values[(int)rightBounds[i] - 1] + rowValue;

minRemainingSum = Min(minRemainingSum, minInRow);
maxRemainingSum = Max(maxRemainingSum, maxInRow);

}

pivot = (minRemainingSum + maxRemainingSum) / 2;
if (pivot <= minRemainingSum || pivot > maxRemainingSum)

pivot = maxRemainingSum;

if (minRemainingSum == maxRemainingSum)
return pivot / 2;

}
}

31

}
}

6.2 Fast Spread Algorithm
The Spread estimator computes the median of all pairwise absolute differences. Given a sample
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), this estimator is defined as:

Spread(x) = Median
1≤𝑖<𝑗≤𝑛

|𝑥𝑖 − 𝑥𝑗|

Like Center, computing Spread naively requires generating all 𝑛(𝑛−1)
2 pairwise differences, sorting

them, and finding the median — a quadratic approach that becomes computationally prohibitive
for large datasets.

The same structural principles that accelerate Center computation apply to pairwise differences,
yielding an exact 𝑂(𝑛 log 𝑛) algorithm. After sorting the input to obtain 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑛, all
pairwise absolute differences |𝑥𝑖 − 𝑥𝑗| with 𝑖 < 𝑗 become positive differences 𝑦𝑗 − 𝑦𝑖. Consider the
implicit upper triangular matrix 𝐷 where 𝐷𝑖,𝑗 = 𝑦𝑗 − 𝑦𝑖 for 𝑖 < 𝑗. This matrix inherits crucial
structural properties: for fixed row 𝑖, differences increase monotonically, while for fixed column 𝑗,
differences decrease as 𝑖 increases. The sorted structure enables linear-time counting of elements
below any threshold.

The algorithm applies Monahan’s selection strategy adapted for differences rather than sums. For
each row 𝑖, it tracks active column indices representing differences still under consideration, initially
spanning columns 𝑖 + 1 through 𝑛. The algorithm chooses candidate differences from the active set
using weighted random row selection, maintaining expected logarithmic convergence while avoiding
expensive pivot computations. For any pivot value 𝑝, it counts how many differences fall below
𝑝 using a single sweep, with the monotonic structure ensuring this counting requires only 𝑂(𝑛)
operations. While counting, the algorithm maintains the largest difference below 𝑝 and smallest
difference at or above 𝑝 — these boundary values become the exact answer when the target rank
is reached.

The algorithm handles both odd and even cases naturally. For an odd number of differences, it
returns the single middle element when the count exactly hits the median rank. For an even number
of differences, it returns the average of the two middle elements, with boundary tracking during
counting providing both values simultaneously. Unlike approximation methods, this algorithm
returns the precise median of all pairwise differences, with randomness affecting only performance,
not correctness.

The algorithm includes the same stall-handling mechanisms as the center algorithm. It tracks
whether the count below the pivot changes between iterations, and when progress stalls due to tied
values, it computes the range of remaining active differences and pivots to their midrange. This
midrange strategy ensures convergence even with highly discrete data or datasets containing many
identical values.

Several optimizations make the algorithm practical for production use. A global column pointer
that never moves backward during counting exploits the matrix structure to avoid redundant com-
parisons. The algorithm captures exact boundary values during each counting pass, eliminating
the need for additional searches when the target rank is reached. Using only 𝑂(𝑛) additional space

32

for row bounds and counters, independent of the quadratic number of pairwise differences, the al-
gorithm achieves 𝑂(𝑛 log 𝑛) time complexity with minimal memory overhead, making robust scale
estimation practical for large datasets.

namespace Pragmastat.Algorithms;

internal static class FastSpreadAlgorithm
{

/// <summary>
/// Shamos "Spread". Expected O(n log n) time, O(n) extra space. Exact.
/// </summary>
public static double Estimate(IReadOnlyList<double> values, Random? random =

null, bool isSorted = false)↪

{
int n = values.Count;
if (n <= 1) return 0;
if (n == 2) return Abs(values[1] - values[0]);
random ??= new Random();

// Prepare a sorted working copy.
double[] a = isSorted ? CopySorted(values) : EnsureSorted(values);

// Total number of pairwise differences with i < j
long N = (long)n * (n - 1) / 2;
long kLow = (N + 1) / 2; // 1-based rank of lower middle
long kHigh = (N + 2) / 2; // 1-based rank of upper middle

// Per-row active bounds over columns j (0-based indices).
// Row i allows j in [i+1, n-1] initially.
int[] L = new int[n];
int[] R = new int[n];
long[] rowCounts = new long[n]; // # of elements in row i that are <

pivot (for current partition)↪

for (int i = 0; i < n; i++)
{

L[i] = Min(i + 1, n); // n means empty
R[i] = n - 1; // inclusive
if (L[i] > R[i])
{

L[i] = 1;
R[i] = 0;

} // mark empty
}

// A reasonable initial pivot: a central gap
double pivot = a[n / 2] - a[(n - 1) / 2];

long prevCountBelow = -1;

33

while (true)
{

// === PARTITION: count how many differences are < pivot; also track
boundary neighbors ===↪

long countBelow = 0;
double largestBelow = double.NegativeInfinity; // max difference <

pivot↪

double smallestAtOrAbove = double.PositiveInfinity; // min difference
>= pivot↪

int j = 1; // global two-pointer (non-decreasing across rows)
for (int i = 0; i < n - 1; i++)
{

if (j < i + 1) j = i + 1;
while (j < n && a[j] - a[i] < pivot) j++;

long cntRow = j - (i + 1);
if (cntRow < 0) cntRow = 0;
rowCounts[i] = cntRow;
countBelow += cntRow;

// boundary elements for this row
if (cntRow > 0)
{

// last < pivot in this row is (j-1)
double candBelow = a[j - 1] - a[i];
if (candBelow > largestBelow) largestBelow = candBelow;

}

if (j < n)
{

double candAtOrAbove = a[j] - a[i];
if (candAtOrAbove < smallestAtOrAbove) smallestAtOrAbove =

candAtOrAbove;↪

}
}

// === TARGET CHECK ===
// If we've split exactly at the middle, we can return using the

boundaries we just found.↪

bool atTarget =
(countBelow == kLow) || // lower middle is the largest < pivot
(countBelow == (kHigh - 1)); // upper middle is the smallest >=

pivot↪

if (atTarget)
{

34

if (kLow < kHigh)
{

// Even N: average the two central order stats.
return 0.5 * (largestBelow + smallestAtOrAbove);

}
else
{

// Odd N: pick the single middle depending on which side we
hit.↪

bool needLargest = (countBelow == kLow);
return needLargest ? largestBelow : smallestAtOrAbove;

}
}

// === STALL HANDLING (ties / no progress) ===
if (countBelow == prevCountBelow)
{

// Compute min/max remaining difference in the ACTIVE set and
pivot to their midrange.↪

double minActive = double.PositiveInfinity;
double maxActive = double.NegativeInfinity;
long active = 0;

for (int i = 0; i < n - 1; i++)
{

int Li = L[i], Ri = R[i];
if (Li > Ri) continue;

double rowMin = a[Li] - a[i];
double rowMax = a[Ri] - a[i];
if (rowMin < minActive) minActive = rowMin;
if (rowMax > maxActive) maxActive = rowMax;
active += (Ri - Li + 1);

}

if (active <= 0)
{

// No active candidates left: the only consistent answer is
the boundary implied by counts.↪

// Fall back to neighbors from this partition.
if (kLow < kHigh) return 0.5 * (largestBelow +

smallestAtOrAbove);↪

return (countBelow >= kLow) ? largestBelow :
smallestAtOrAbove;↪

}

if (maxActive <= minActive) return minActive; // all remaining
equal↪

35

double mid = 0.5 * (minActive + maxActive);
pivot = (mid > minActive && mid <= maxActive) ? mid : maxActive;
prevCountBelow = countBelow;
continue;

}

// === SHRINK ACTIVE WINDOW ===
// --- SHRINK ACTIVE WINDOW (fixed) ---

if (countBelow < kLow)
{

// Need larger differences: discard all strictly below pivot.
for (int i = 0; i < n - 1; i++)
{

// First j with a[j] - a[i] >= pivot is j = i + 1 + cntRow
(may be n => empty row)↪

int newL = i + 1 + (int)rowCounts[i];
if (newL > L[i]) L[i] = newL; // do NOT clamp; allow L[i] ==

n to mean empty↪

if (L[i] > R[i])
{

L[i] = 1;
R[i] = 0;

} // mark empty
}

}
else
{

// Too many below: keep only those strictly below pivot.
for (int i = 0; i < n - 1; i++)
{

// Last j with a[j] - a[i] < pivot is j = i + cntRow (not
cntRow-1!)↪

int newR = i + (int)rowCounts[i];
if (newR < R[i]) R[i] = newR; // shrink downward to the true

last-below↪

if (R[i] < i + 1)
{

L[i] = 1;
R[i] = 0;

} // empty row if none remain
}

}

prevCountBelow = countBelow;

// === CHOOSE NEXT PIVOT FROM ACTIVE SET (weighted random row, then
row median) ===↪

36

long activeSize = 0;
for (int i = 0; i < n - 1; i++)
{

if (L[i] <= R[i]) activeSize += (R[i] - L[i] + 1);
}

if (activeSize <= 2)
{

// Few candidates left: return midrange of remaining exactly.
double minRem = double.PositiveInfinity, maxRem =

double.NegativeInfinity;↪

for (int i = 0; i < n - 1; i++)
{

if (L[i] > R[i]) continue;
double lo = a[L[i]] - a[i];
double hi = a[R[i]] - a[i];
if (lo < minRem) minRem = lo;
if (hi > maxRem) maxRem = hi;

}

if (activeSize <= 0) // safety net; fall back to boundary from
last partition↪

{
if (kLow < kHigh) return 0.5 * (largestBelow +

smallestAtOrAbove);↪

return (countBelow >= kLow) ? largestBelow :
smallestAtOrAbove;↪

}

if (kLow < kHigh) return 0.5 * (minRem + maxRem);
return (Abs((kLow - 1) - countBelow) <= Abs(countBelow - kLow)) ?

minRem : maxRem;↪

}
else
{

long t = NextIndex(random, activeSize); // 0..activeSize-1
long acc = 0;
int row = 0;
for (; row < n - 1; row++)
{

if (L[row] > R[row]) continue;
long size = R[row] - L[row] + 1;
if (t < acc + size) break;
acc += size;

}

// Median column of the selected row
int col = (L[row] + R[row]) >> 1;

37

pivot = a[col] - a[row];
}

}
}
// --- Helpers ---

private static double[] CopySorted(IReadOnlyList<double> values)
{

var a = new double[values.Count];
for (int i = 0; i < a.Length; i++)
{

double v = values[i];
if (double.IsNaN(v)) throw new ArgumentException("NaN not allowed.",

nameof(values));↪

a[i] = v;
}

Array.Sort(a);
return a;

}

private static double[] EnsureSorted(IReadOnlyList<double> values)
{

// Trust caller; still copy to array for fast indexed access.
var a = new double[values.Count];
for (int i = 0; i < a.Length; i++)
{

double v = values[i];
if (double.IsNaN(v)) throw new ArgumentException("NaN not allowed.",

nameof(values));↪

a[i] = v;
}

return a;
}

private static long NextIndex(Random rng, long limitExclusive)
{

// Uniform 0..limitExclusive-1 even for large ranges.
// Use rejection sampling for correctness.
ulong uLimit = (ulong)limitExclusive;
if (uLimit <= int.MaxValue)
{

return rng.Next((int)uLimit);
}

while (true)
{

38

ulong u = ((ulong)(uint)rng.Next() << 32) | (uint)rng.Next();
ulong r = u % uLimit;
if (u - r <= ulong.MaxValue - (ulong.MaxValue % uLimit)) return

(long)r;↪

}
}

}

7 Studies
This section analyzes the estimators’ properties using mathematical proofs. Most proofs are adapted
from various textbooks and research papers, but only essential references are provided.

Unlike the main part of the manual, the studies require knowledge of classic statistical methods.
Well-known facts and commonly accepted notation are used without special introduction. The
studies provide detailed analyses of estimator properties for practitioners interested in rigorous
proofs and numerical simulation results.

7.1 Additive (‘Normal’) Distribution
The Additive (‘Normal’) distribution has two parameters: the mean and the standard deviation,
written as Additive(mean, stdDev).

7.1.1 Asymptotic Spread Value

Consider two independent draws 𝑋 and 𝑌 from the Additive(mean, stdDev) distribution. The
goal is to find the median of their absolute difference |𝑋 − 𝑌 |. Define the difference 𝐷 = 𝑋 − 𝑌 .
By linearity of expectation, 𝐸[𝐷] = 0. By independence, Var[𝐷] = 2 ⋅ stdDev2. Thus 𝐷 has
distribution Additive(0,

√
2 ⋅ stdDev), and the problem reduces to finding the median of |𝐷|. The

location parameter mean disappears, as expected, because absolute differences are invariant under
shifts.

Let 𝜏 =
√

2 ⋅ stdDev, so that 𝐷 ∼ Additive(0, 𝜏). The random variable |𝐷| then follows the Half-
Additive (‘Folded Normal’) distribution with scale 𝜏 . Its cumulative distribution function for 𝑧 ≥ 0
becomes

𝐹|𝐷|(𝑧) = Pr(|𝐷| ≤ 𝑧) = 2Φ(𝑧
𝜏) − 1,

where Φ denotes the standard Additive (‘Normal’) CDF.

The median 𝑚 is the point at which this cdf equals 1/2. Setting 𝐹|𝐷|(𝑚) = 1/2 gives

2Φ(𝑚
𝜏) − 1 = 1

2 ⟹ Φ(𝑚
𝜏) = 3

4 .

Applying the inverse cdf yields 𝑚/𝜏 = 𝑧0.75. Substituting back 𝜏 =
√

2 ⋅ stdDev produces

Median(|𝑋 − 𝑌 |) =
√

2 ⋅ 𝑧0.75 ⋅ stdDev.

39

Define 𝑧0.75 ∶= Φ−1(0.75) ≈ 0.6744897502. Numerically, the median absolute difference is approx-
imately

√
2 ⋅ 𝑧0.75 ⋅ stdDev ≈ 0.9538725524 ⋅ stdDev. This expression depends only on the scale

parameter stdDev, not on the mean, reflecting the translation invariance of the problem.

7.1.2 Lemma: Average Estimator Drift Formula

For average estimators 𝑇𝑛 with asymptotic standard deviation 𝑎 ⋅ stdDev/√𝑛 around the mean
𝜇, define RelSpread[𝑇𝑛] ∶= Spread[𝑇𝑛]/ Spread[𝑋]. In the Additive (‘Normal’) case, Spread[𝑋] =√

2 ⋅ 𝑧0.75 ⋅ stdDev.

For any average estimator 𝑇𝑛 with asymptotic distribution 𝑇𝑛 ∼ approx Additive(𝜇, (𝑎 ⋅
stdDev)2/𝑛), the drift calculation follows:

• The spread of two independent estimates: Spread[𝑇𝑛] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑎 ⋅ stdDev/√𝑛
• The relative spread: RelSpread[𝑇𝑛] = 𝑎/√𝑛
• The asymptotic drift: Drift(𝑇 , 𝑋) = 𝑎

7.1.3 Asymptotic Mean Drift

For the sample mean Mean(x) = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖 applied to samples from Additive(mean, stdDev), the
sampling distribution of Mean is also additive with mean mean and standard deviation stdDev/√𝑛.

Using the lemma with 𝑎 = 1 (since the standard deviation is stdDev/√𝑛):

Drift(Mean, 𝑋) = 1

Mean achieves unit drift under Additive (‘Normal’) distribution, serving as the natural baseline
for comparison. Mean is the optimal estimator under Additive (‘Normal’) distribution: no other
estimators achieve lower Drift.

7.1.4 Asymptotic Median Drift

For the sample median Median(x) applied to samples from Additive(mean, stdDev), the asymp-
totic sampling distribution of Median is approximately Additive (‘Normal’) with mean mean and
standard deviation √𝜋/2 ⋅ stdDev/√𝑛.

This result follows from the asymptotic theory of order statistics. For the median of a sample from
a continuous distribution with density 𝑓 and cumulative distribution 𝐹 , the asymptotic variance is
1/(4𝑛[𝑓(𝐹 −1(0.5))]2). For the Additive (‘Normal’) distribution with standard deviation stdDev, the
density at the median (which equals the mean) is 1/(stdDev

√
2𝜋). Thus the asymptotic variance

becomes 𝜋 ⋅ stdDev2/(2𝑛).
Using the lemma with 𝑎 = √𝜋/2:

Drift(Median, 𝑋) = √𝜋
2

Numerically, √𝜋/2 ≈ 1.2533, so the median has approximately 25% higher drift than the mean
under the Additive (‘Normal’) distribution.

40

7.1.5 Asymptotic Center Drift

For the sample center Center(x) = Median
1≤𝑖≤𝑗≤𝑛

(𝑥𝑖+𝑥𝑗
2) applied to samples from Additive(mean, stdDev),

we need to determine the asymptotic sampling distribution.

The center estimator computes all pairwise averages (including 𝑖 = 𝑗) and takes their median. For
the Additive (‘Normal’) distribution, the asymptotic theory shows that the center estimator is
asymptotically Additive (‘Normal’) with mean mean.

The exact asymptotic variance of the center estimator for the Additive (‘Normal’) distribution is:

Var[Center(𝑋1∶𝑛)] = 𝜋 ⋅ stdDev2

3𝑛

This gives an asymptotic standard deviation of:

StdDev[Center(𝑋1∶𝑛)] = √𝜋
3 ⋅ stdDev√𝑛

Using the lemma with 𝑎 = √𝜋/3:

Drift(Center, 𝑋) = √𝜋
3

Numerically, √𝜋/3 ≈ 1.0233, so the center estimator achieves drift very close to 1 under the
Additive (‘Normal’) distribution, performing nearly as well as the mean while offering greater
robustness to outliers.

7.1.6 Lemma: Dispersion Estimator Drift Formula

For dispersion estimators 𝑇𝑛 with asymptotic center 𝑏⋅stdDev and standard deviation 𝑎⋅stdDev/√𝑛,
define RelSpread[𝑇𝑛] ∶= Spread[𝑇𝑛]/(𝑏 ⋅ stdDev).
For any dispersion estimator 𝑇𝑛 with asymptotic distribution 𝑇𝑛 ∼ approx Additive(𝑏 ⋅ stdDev, (𝑎 ⋅
stdDev)2/𝑛), the drift calculation follows:

• The spread of two independent estimates: Spread[𝑇𝑛] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑎 ⋅ stdDev/√𝑛
• The relative spread: RelSpread[𝑇𝑛] =

√
2 ⋅ 𝑧0.75 ⋅ 𝑎/(𝑏√𝑛)

• The asymptotic drift: Drift(𝑇 , 𝑋) =
√

2 ⋅ 𝑧0.75 ⋅ 𝑎/𝑏
Note: The

√
2 factor comes from the standard deviation of the difference 𝐷 = 𝑇1 − 𝑇2 of two

independent estimates, and the 𝑧0.75 factor converts this standard deviation to the median absolute
difference.

7.1.7 Asymptotic StdDev Drift

For the sample standard deviation StdDev(x) = √ 1
𝑛−1 ∑𝑛

𝑖=1(𝑥𝑖 − Mean(x))2 applied to samples
from Additive(mean, stdDev), the sampling distribution of StdDev is approximately Additive (‘Nor-
mal’) for large 𝑛 with mean stdDev and standard deviation stdDev/

√
2𝑛.

41

Applying the lemma with 𝑎 = 1/
√

2 and 𝑏 = 1:

Spread[StdDev(𝑋1∶𝑛)] =
√

2 ⋅ 𝑧0.75 ⋅ 1√
2

⋅ stdDev√𝑛 = 𝑧0.75 ⋅ stdDev√𝑛

For the dispersion drift, we use the relative spread formula:

RelSpread[StdDev(𝑋1∶𝑛)] = Spread[StdDev(𝑋1∶𝑛)]
Center[StdDev(𝑋1∶𝑛)]

Since Center[StdDev(𝑋1∶𝑛)] ≈ stdDev asymptotically:

RelSpread[StdDev(𝑋1∶𝑛)] = 𝑧0.75 ⋅ stdDev/√𝑛
stdDev = 𝑧0.75√𝑛

Therefore:

Drift(StdDev, 𝑋) = lim
𝑛→∞

√𝑛 ⋅ RelSpread[StdDev(𝑋1∶𝑛)] = 𝑧0.75

Numerically, 𝑧0.75 ≈ 0.67449.

7.1.8 Asymptotic MAD Drift

For the median absolute deviation MAD(x) = Median(|𝑥𝑖 − Median(x)|) applied to samples from
Additive(mean, stdDev), the asymptotic distribution is approximately Additive (‘Normal’).

For the Additive (‘Normal’) distribution, the population MAD equals 𝑧0.75 ⋅stdDev. The asymptotic
standard deviation of the sample MAD is:

StdDev[MAD(𝑋1∶𝑛)] = 𝑐mad ⋅ stdDev√𝑛

where 𝑐mad ≈ 0.78.

Applying the lemma with 𝑎 = 𝑐mad and 𝑏 = 𝑧0.75:

Spread[MAD(𝑋1∶𝑛)] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑐mad ⋅ stdDev√𝑛

Since Center[MAD(𝑋1∶𝑛)] ≈ 𝑧0.75 ⋅ stdDev asymptotically:

RelSpread[MAD(𝑋1∶𝑛)] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑐mad ⋅ stdDev/√𝑛
𝑧0.75 ⋅ stdDev =

√
2 ⋅ 𝑐mad√𝑛

Therefore:

Drift(MAD, 𝑋) = lim
𝑛→∞

√𝑛 ⋅ RelSpread[MAD(𝑋1∶𝑛)] =
√

2 ⋅ 𝑐mad

42

Numerically,
√

2 ⋅ 𝑐mad ≈
√

2 ⋅ 0.78 ≈ 1.10.

7.1.9 Asymptotic Spread Drift

For the sample spread Spread(x) = Median
1≤𝑖<𝑗≤𝑛

|𝑥𝑖−𝑥𝑗| applied to samples from Additive(mean, stdDev),
the asymptotic distribution is approximately Additive (‘Normal’).

The spread estimator computes all pairwise absolute differences and takes their median. For the
Additive (‘Normal’) distribution, the population spread equals

√
2 ⋅ 𝑧0.75 ⋅ stdDev as derived in the

Asymptotic Spread Value section.

The asymptotic standard deviation of the sample spread for the Additive (‘Normal’) distribution
is:

StdDev[Spread(𝑋1∶𝑛)] = 𝑐spr ⋅ stdDev√𝑛

where 𝑐spr ≈ 0.72.

Applying the lemma with 𝑎 = 𝑐spr and 𝑏 =
√

2 ⋅ 𝑧0.75:

Spread[Spread(𝑋1∶𝑛)] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑐spr ⋅ stdDev√𝑛

Since Center[Spread(𝑋1∶𝑛)] ≈
√

2 ⋅ 𝑧0.75 ⋅ stdDev asymptotically:

RelSpread[Spread(𝑋1∶𝑛)] =
√

2 ⋅ 𝑧0.75 ⋅ 𝑐spr ⋅ stdDev/√𝑛√
2 ⋅ 𝑧0.75 ⋅ stdDev

= 𝑐spr√𝑛

Therefore:

Drift(Spread, 𝑋) = lim
𝑛→∞

√𝑛 ⋅ RelSpread[Spread(𝑋1∶𝑛)] = 𝑐spr

Numerically, 𝑐spr ≈ 0.72.

7.1.10 Summary

Summary for average estimators:

Estimator Drift(𝐸, 𝑋) Drift2(𝐸, 𝑋) 1/ Drift2(𝐸, 𝑋)
Mean 1 1 1
Median ≈ 1.253 𝜋/2 ≈ 1.571 2/𝜋 ≈ 0.637
Center ≈ 1.023 𝜋/3 ≈ 1.047 3/𝜋 ≈ 0.955

The squared drift values indicate the sample size adjustment needed when switching estimators. For
instance, switching from Mean to Median while maintaining the same precision requires increasing

43

the sample size by a factor of 𝜋/2 ≈ 1.571 (about 57% more observations). Similarly, switching
from Mean to Center requires only about 5% more observations.

The inverse squared drift (rightmost column) equals the classical statistical efficiency relative to
the Mean. The Mean achieves optimal performance (unit efficiency) for the Additive (‘Normal’)
distribution, as expected from classical theory. The Center maintains 95.5% efficiency while offering
greater robustness to outliers, making it an attractive alternative when some contamination is
possible. The Median, while most robust, operates at only 63.7% efficiency under purely Additive
(‘Normal’) conditions.

Summary for dispersion estimators:

For the Additive (‘Normal’) distribution, the asymptotic drift values reveal the relative precision
of different dispersion estimators:

Estimator Drift(𝐸, 𝑋) Drift2(𝐸, 𝑋) 1/ Drift2(𝐸, 𝑋)
StdDev ≈ 0.67 ≈ 0.45 ≈ 2.22
MAD ≈ 1.10 ≈ 1.22 ≈ 0.82
Spread ≈ 0.72 ≈ 0.52 ≈ 1.92

The squared drift values indicate the sample size adjustment needed when switching estimators. For
instance, switching from StdDev to MAD while maintaining the same precision requires increasing
the sample size by a factor of 1.22/0.45 ≈ 2.71 (more than doubling the observations). Similarly,
switching from StdDev to Spread requires a factor of 0.52/0.45 ≈ 1.16.

The StdDev achieves optimal performance for the Additive (‘Normal’) distribution. The MAD
requires about 2.7 times more data to match StdDev precision, while offering greater robustness to
outliers. The Spread requires about 1.16 times more data to match StdDev precision under purely
Additive (‘Normal’) conditions while maintaining robustness.

8 Reference Implementations
8.1 Python
Install from PyPI:

pip install pragmastat==3.1.26

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/python

Pragmastat on PyPI: https://pypi.org/project/pragmastat/

Demo:

from pragmastat import center, spread, rel_spread, shift, ratio, avg_spread,
disparity↪

def main():
x = [0, 2, 4, 6, 8]
print(center(x)) # 4

44

print(center([v + 10 for v in x])) # 14
print(center([v * 3 for v in x])) # 12

print(spread(x)) # 4
print(spread([v + 10 for v in x])) # 4
print(spread([v * 2 for v in x])) # 8

print(rel_spread(x)) # 1
print(rel_spread([v * 5 for v in x])) # 1

y = [10, 12, 14, 16, 18]
print(shift(x, y)) # -10
print(shift(x, x)) # 0
print(shift([v + 7 for v in x], [v + 3 for v in y])) # -6
print(shift([v * 2 for v in x], [v * 2 for v in y])) # -20
print(shift(y, x)) # 10

x = [1, 2, 4, 8, 16]
y = [2, 4, 8, 16, 32]
print(ratio(x, y)) # 0.5
print(ratio(x, x)) # 1
print(ratio([v * 2 for v in x], [v * 5 for v in y])) # 0.2

x = [0, 3, 6, 9, 12]
y = [0, 2, 4, 6, 8]
print(spread(x)) # 6
print(spread(y)) # 4

print(avg_spread(x, y)) # 5
print(avg_spread(x, x)) # 6
print(avg_spread([v * 2 for v in x], [v * 3 for v in x])) # 15
print(avg_spread(y, x)) # 5
print(avg_spread([v * 2 for v in x], [v * 2 for v in y])) # 10

print(shift(x, y)) # 2
print(avg_spread(x, y)) # 5

print(disparity(x, y)) # 0.4
print(disparity([v + 5 for v in x], [v + 5 for v in y])) # 0.4
print(disparity([v * 2 for v in x], [v * 2 for v in y])) # 0.4
print(disparity(y, x)) # -0.4

if __name__ == "__main__":
main()

8.2 TypeScript
Install from npm:

45

npm i pragmastat@3.1.26

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/ts

Pragmastat on npm: https://www.npmjs.com/package/pragmastat

Demo:

import { center, spread, relSpread, shift, ratio, avgSpread, disparity } from
'../src';↪

function main() {
let x = [0, 2, 4, 6, 8];
console.log(center(x)); // 4
console.log(center(x.map(v => v + 10))); // 14
console.log(center(x.map(v => v * 3))); // 12

console.log(spread(x)); // 4
console.log(spread(x.map(v => v + 10))); // 4
console.log(spread(x.map(v => v * 2))); // 8

console.log(relSpread(x)); // 1
console.log(relSpread(x.map(v => v * 5))); // 1

let y = [10, 12, 14, 16, 18];
console.log(shift(x, y)); // -10
console.log(shift(x, x)); // 0
console.log(shift(x.map(v => v + 7), y.map(v => v + 3))); // -6
console.log(shift(x.map(v => v * 2), y.map(v => v * 2))); // -20
console.log(shift(y, x)); // 10

x = [1, 2, 4, 8, 16];
y = [2, 4, 8, 16, 32];
console.log(ratio(x, y)); // 0.5
console.log(ratio(x, x)); // 1
console.log(ratio(x.map(v => v * 2), y.map(v => v * 5))); // 0.2

x = [0, 3, 6, 9, 12];
y = [0, 2, 4, 6, 8];
console.log(spread(x)); // 6
console.log(spread(y)); // 4

console.log(avgSpread(x, y)); // 5
console.log(avgSpread(x, x)); // 6
console.log(avgSpread(x.map(v => v * 2), x.map(v => v * 3))); // 15
console.log(avgSpread(y, x)); // 5
console.log(avgSpread(x.map(v => v * 2), y.map(v => v * 2))); // 10

console.log(shift(x, y)); // 2
console.log(avgSpread(x, y)); // 5

46

console.log(disparity(x, y)); // 0.4
console.log(disparity(x.map(v => v + 5), y.map(v => v + 5))); // 0.4
console.log(disparity(x.map(v => v * 2), y.map(v => v * 2))); // 0.4
console.log(disparity(y, x)); // -0.4

}

main();

8.3 R
Install from GitHub:

install.packages("remotes") # If 'remotes' is not installed
remotes::install_github("AndreyAkinshin/pragmastat",

subdir = "r/pragmastat", ref = "v3.1.26")
library(pragmastat)

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/r

Demo:

library(pragmastat)

x <- c(0, 2, 4, 6, 8)
print(center(x)) # 4
print(center(x + 10)) # 14
print(center(x * 3)) # 12

print(spread(x)) # 4
print(spread(x + 10)) # 4
print(spread(x * 2)) # 8

print(rel_spread(x)) # 1
print(rel_spread(x * 5)) # 1

y <- c(10, 12, 14, 16, 18)
print(shift(x, y)) # -10
print(shift(x, x)) # 0
print(shift(x + 7, y + 3)) # -6
print(shift(x * 2, y * 2)) # -20
print(shift(y, x)) # 10

x <- c(1, 2, 4, 8, 16)
y <- c(2, 4, 8, 16, 32)
print(ratio(x, y)) # 0.5
print(ratio(x, x)) # 1
print(ratio(x * 2, y * 5)) # 0.2

x <- c(0, 3, 6, 9, 12)
y <- c(0, 2, 4, 6, 8)

47

print(spread(x)) # 6
print(spread(y)) # 4

print(avg_spread(x, y)) # 5
print(avg_spread(x, x)) # 6
print(avg_spread(x * 2, x * 3)) # 15
print(avg_spread(y, x)) # 5
print(avg_spread(x * 2, y * 2)) # 10

print(shift(x, y)) # 2
print(avg_spread(x, y)) # 5

print(disparity(x, y)) # 0.4
print(disparity(x + 5, y + 5)) # 0.4
print(disparity(x * 2, y * 2)) # 0.4
print(disparity(y, x)) # -0.4

8.4 .NET
Install from NuGet via .NET CLI:

dotnet add package Pragmastat --version 3.1.26

Install from NuGet via Package Manager Console:

NuGet\Install-Package Pragmastat -Version 3.1.26

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/dotnet

Pragmastat on NuGet: https://www.nuget.org/packages/Pragmastat/

Demo:

using static System.Console;

namespace Pragmastat.Demo;

class Program
{

static void Main()
{

var x = new Sample(0, 2, 4, 6, 8);
WriteLine(x.Center()); // 4
WriteLine((x + 10).Center()); // 14
WriteLine((x * 3).Center()); // 12

WriteLine(x.Spread()); // 4
WriteLine((x + 10).Spread()); // 4
WriteLine((x * 2).Spread()); // 8

WriteLine(x.RelSpread()); // 1
WriteLine((x * 5).RelSpread()); // 1

48

var y = new Sample(10, 12, 14, 16, 18);
WriteLine(Toolkit.Shift(x, y)); // -10
WriteLine(Toolkit.Shift(x, x)); // 0
WriteLine(Toolkit.Shift(x + 7, y + 3)); // -6
WriteLine(Toolkit.Shift(x * 2, y * 2)); // -20
WriteLine(Toolkit.Shift(y, x)); // 10

x = new Sample(1, 2, 4, 8, 16);
y = new Sample(2, 4, 8, 16, 32);
WriteLine(Toolkit.Ratio(x, y)); // 0.5
WriteLine(Toolkit.Ratio(x, x)); // 1
WriteLine(Toolkit.Ratio(x * 2, y * 5)); // 0.2

x = new Sample(0, 3, 6, 9, 12);
y = new Sample(0, 2, 4, 6, 8);
WriteLine(x.Spread()); // 6
WriteLine(y.Spread()); // 4

WriteLine(Toolkit.AvgSpread(x, y)); // 5
WriteLine(Toolkit.AvgSpread(x, x)); // 6
WriteLine(Toolkit.AvgSpread(x * 2, x * 3)); // 15
WriteLine(Toolkit.AvgSpread(y, x)); // 5
WriteLine(Toolkit.AvgSpread(x * 2, y * 2)); // 10

WriteLine(Toolkit.Shift(x, y)); // 2
WriteLine(Toolkit.AvgSpread(x, y)); // 5

WriteLine(Toolkit.Disparity(x, y)); // 0.4
WriteLine(Toolkit.Disparity(x + 5, y + 5)); // 0.4
WriteLine(Toolkit.Disparity(x * 2, y * 2)); // 0.4
WriteLine(Toolkit.Disparity(y, x)); // -0.4

}
}

8.5 Kotlin
Install from Maven Central Repository via Apache Maven:

<dependency>
<groupId>dev.pragmastat</groupId>
<artifactId>pragmastat</artifactId>
<version>3.1.26</version>

</dependency>

Install from Maven Central Repository via Gradle:

implementation 'dev.pragmastat:pragmastat:3.1.26'

Install from Maven Central Repository via Gradle (Kotlin):

49

implementation("dev.pragmastat:pragmastat:3.1.26")

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/kotlin

Pragmastat on Maven Central Repository: https://central.sonatype.com/artifact/dev.pragmastat/pragmastat/overview

Demo:

package dev.pragmastat.example

import dev.pragmastat.*

fun main() {
var x = listOf(0.0, 2.0, 4.0, 6.0, 8.0)
println(center(x)) // 4
println(center(x.map { it + 10 })) // 14
println(center(x.map { it * 3 })) // 12

println(spread(x)) // 4
println(spread(x.map { it + 10 })) // 4
println(spread(x.map { it * 2 })) // 8

println(relSpread(x)) // 1
println(relSpread(x.map { it * 5 })) // 1

var y = listOf(10.0, 12.0, 14.0, 16.0, 18.0)
println(shift(x, y)) // -10
println(shift(x, x)) // 0
println(shift(x.map { it + 7 }, y.map { it + 3 })) // -6
println(shift(x.map { it * 2 }, y.map { it * 2 })) // -20
println(shift(y, x)) // 10

x = listOf(1.0, 2.0, 4.0, 8.0, 16.0)
y = listOf(2.0, 4.0, 8.0, 16.0, 32.0)
println(ratio(x, y)) // 0.5
println(ratio(x, x)) // 1
println(ratio(x.map { it * 2 }, y.map { it * 5 })) // 0.2

x = listOf(0.0, 3.0, 6.0, 9.0, 12.0)
y = listOf(0.0, 2.0, 4.0, 6.0, 8.0)
println(spread(x)) // 6
println(spread(y)) // 4

println(avgSpread(x, y)) // 5
println(avgSpread(x, x)) // 6
println(avgSpread(x.map { it * 2 }, x.map { it * 3 })) // 15
println(avgSpread(y, x)) // 5
println(avgSpread(x.map { it * 2 }, y.map { it * 2 })) // 10

println(shift(x, y)) // 2

50

println(avgSpread(x, y)) // 5

println(disparity(x, y)) // 0.4
println(disparity(x.map { it + 5 }, y.map { it + 5 })) // 0.4
println(disparity(x.map { it * 2 }, y.map { it * 2 })) // 0.4
println(disparity(y, x)) // -0.4

}

8.6 Rust
Install from crates.io via cargo:

cargo add pragmastat@3.1.26

Install from crates.io via Cargo.toml:

[dependencies]
pragmastat = "3.1.26"

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/rust

Pragmastat on crates.io: https://crates.io/crates/pragmastat

Demo:

use pragmastat::*;

fn print(result: Result<f64, &str>) {
println!("{}", result.unwrap());

}

fn add(x: &[f64], val: f64) -> Vec<f64> {
x.iter().map(|v| v + val).collect()

}

fn multiply(x: &[f64], val: f64) -> Vec<f64> {
x.iter().map(|v| v * val).collect()

}

fn main() {
let x = vec![0.0, 2.0, 4.0, 6.0, 8.0];
print(center(&x)); // 4
print(center(&add(&x, 10.0))); // 14
print(center(&multiply(&x, 3.0))); // 12

print(spread(&x)); // 4
print(spread(&add(&x, 10.0))); // 4
print(spread(&multiply(&x, 2.0))); // 8

print(rel_spread(&x)); // 1
print(rel_spread(&multiply(&x, 5.0))); // 1

51

let y = vec![10.0, 12.0, 14.0, 16.0, 18.0];
print(shift(&x, &y)); // -10
print(shift(&x, &x)); // 0
print(shift(&add(&x, 7.0), &add(&y, 3.0))); // -6
print(shift(&multiply(&x, 2.0), &multiply(&y, 2.0))); // -20
print(shift(&y, &x)); // 10

let x = vec![1.0, 2.0, 4.0, 8.0, 16.0];
let y = vec![2.0, 4.0, 8.0, 16.0, 32.0];
print(ratio(&x, &y)); // 0.5
print(ratio(&x, &x)); // 1
print(ratio(&multiply(&x, 2.0), &multiply(&y, 5.0))); // 0.2

let x = vec![0.0, 3.0, 6.0, 9.0, 12.0];
let y = vec![0.0, 2.0, 4.0, 6.0, 8.0];
print(spread(&x)); // 6
print(spread(&y)); // 4

print(avg_spread(&x, &y)); // 5
print(avg_spread(&x, &x)); // 6
print(avg_spread(&multiply(&x, 2.0), &multiply(&x, 3.0))); // 15
print(avg_spread(&y, &x)); // 5
print(avg_spread(&multiply(&x, 2.0), &multiply(&y, 2.0))); // 10

print(shift(&x, &y)); // 2
print(avg_spread(&x, &y)); // 5

print(disparity(&x, &y)); // 0.4
print(disparity(&add(&x, 5.0), &add(&y, 5.0))); // 0.4
print(disparity(&multiply(&x, 2.0), &multiply(&y, 2.0))); // 0.4
print(disparity(&y, &x)); // -0.4

}

8.7 Go
Install from GitHub:

go get github.com/AndreyAkinshin/pragmastat/go/v3@v3.1.26

Source code: https://github.com/AndreyAkinshin/pragmastat/tree/v3.1.26/go

Demo:

package main

import (
"fmt"
"log"

pragmastat "github.com/AndreyAkinshin/pragmastat/go/v3"
)

52

func must[T any](val T, err error) T {
if err != nil {

log.Fatal(err)
}
return val

}

func print(val float64, err error) {
fmt.Println(must(val, err))

}

func add(x []float64, val float64) []float64 {
result := make([]float64, len(x))
for i, v := range x {

result[i] = v + val
}
return result

}

func multiply(x []float64, val float64) []float64 {
result := make([]float64, len(x))
for i, v := range x {

result[i] = v * val
}
return result

}

func main() {
x := []float64{0, 2, 4, 6, 8}
print(pragmastat.Center(x)) // 4
print(pragmastat.Center(add(x, 10))) // 14
print(pragmastat.Center(multiply(x, 3))) // 12

print(pragmastat.Spread(x)) // 4
print(pragmastat.Spread(add(x, 10))) // 4
print(pragmastat.Spread(multiply(x, 2))) // 8

print(pragmastat.RelSpread(x)) // 1
print(pragmastat.RelSpread(multiply(x, 5))) // 1

y := []float64{10, 12, 14, 16, 18}
print(pragmastat.Shift(x, y)) // -10
print(pragmastat.Shift(x, x)) // 0
print(pragmastat.Shift(add(x, 7), add(y, 3))) // -6
print(pragmastat.Shift(multiply(x, 2), multiply(y, 2))) // -20
print(pragmastat.Shift(y, x)) // 10

53

x = []float64{1, 2, 4, 8, 16}
y = []float64{2, 4, 8, 16, 32}
print(pragmastat.Ratio(x, y)) // 0.5
print(pragmastat.Ratio(x, x)) // 1
print(pragmastat.Ratio(multiply(x, 2), multiply(y, 5))) // 0.2

x = []float64{0, 3, 6, 9, 12}
y = []float64{0, 2, 4, 6, 8}
print(pragmastat.Spread(x)) // 6
print(pragmastat.Spread(y)) // 4

print(pragmastat.AvgSpread(x, y)) // 5
print(pragmastat.AvgSpread(x, x)) // 6
print(pragmastat.AvgSpread(multiply(x, 2), multiply(x, 3))) // 15
print(pragmastat.AvgSpread(y, x)) // 5
print(pragmastat.AvgSpread(multiply(x, 2), multiply(y, 2))) // 10

print(pragmastat.Shift(x, y)) // 2
print(pragmastat.AvgSpread(x, y)) // 5

print(pragmastat.Disparity(x, y)) // 0.4
print(pragmastat.Disparity(add(x, 5), add(y, 5))) // 0.4
print(pragmastat.Disparity(multiply(x, 2), multiply(y, 2))) // 0.4
print(pragmastat.Disparity(y, x)) // -0.4

}

9 Artifacts
Manual:

• pragmastat-v3.1.26.pdf
• pragmastat-v3.1.26.md
• web-v3.1.26.zip

Implementations:

• python-v3.1.26.zip
• ts-v3.1.26.zip
• r-v3.1.26.zip
• dotnet-v3.1.26.zip
• kotlin-v3.1.26.zip
• rust-v3.1.26.zip
• go-v3.1.26.zip

Data:

• tests-v3.1.26.zip
• simulations-v3.1.26.zip

Source code:

54

https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/pragmastat-v3.1.26.pdf
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/pragmastat-v3.1.26.md
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/web-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/python-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/ts-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/r-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/dotnet-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/kotlin-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/rust-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/go-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/tests-v3.1.26.zip
https://github.com/AndreyAkinshin/pragmastat/releases/download/v3.1.26/simulations-v3.1.26.zip

• pragmastat-3.1.26.zip

Hodges, J. L., and E. L. Lehmann. 1963. “Estimates of Location Based on Rank Tests.” The
Annals of Mathematical Statistics 34 (2): 598–611. https://doi.org/10.1214/aoms/1177704172.

Monahan, John F. 1984. “Algorithm 616: Fast Computation of the Hodges-Lehmann Location
Estimator.” ACM Transactions on Mathematical Software 10 (3): 265–70. https://doi.org/10.1
145/1271.319414.

Sen, Pranab Kumar. 1963. “On the Estimation of Relative Potency in Dilution (-Direct) Assays
by Distribution-Free Methods.” Biometrics 19 (4): 532. https://doi.org/10.2307/2527532.

Shamos, Michael Ian. 1976. “Geometry and Statistics: Problems at the Interface.”

55

https://github.com/AndreyAkinshin/pragmastat/archive/refs/tags/v3.1.26.zip
https://doi.org/10.1214/aoms/1177704172
https://doi.org/10.1145/1271.319414
https://doi.org/10.1145/1271.319414
https://doi.org/10.2307/2527532

	Introduction
	Primer
	Breaking changes
	Definitions

	Summary Estimators
	Center
	Spread
	RelSpread
	Shift
	Ratio
	AvgSpread
	Disparity (‘robust effect size’)

	Distributions
	Additive (‘Normal’)
	Multiplic (‘LogNormal’)
	Exponential
	Power (‘Pareto’)
	Uniform

	Summary Estimator Properties
	Breakdown
	Drift
	Invariance

	Methodology
	Desiderata
	From Assumptions to Conditions
	From Statistical Efficiency to Drift

	Algorithms
	Fast Center Algorithm
	Fast Spread Algorithm

	Studies
	Additive (‘Normal’) Distribution

	Reference Implementations
	Python
	TypeScript
	R
	.NET
	Kotlin
	Rust
	Go

	Artifacts

