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Abstract

This manual presents a unified statistical toolkit for reliable analysis of real-world data. The toolkit
nearly matches the efficiency of traditional statistical estimators under normality, has practically rea-
sonable robustness, enables simple software implementations without advanced statistical libraries, and
provides clear explanations accessible to practitioners without deep statistical training. The toolkit
consists of renamed, recombined, and refined versions of existing methods.
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1 Toolkit

This section provides statistical estimators for summarizing a single sample and comparing two samples.

1.1 One-Sample Summary

Consider a sample x of n real numbers: x = (x1, x2, . . . , xn). The toolkit provides four estimators to
summarize key properties of the data and provide insights into the data’s primary characteristics:

Center(x) = Median
1≤i≤j≤n

(
xi + xj

2

)

Spread(x) = Median
1≤i<j≤n

|xi − xj |

Volatility(x) = Spread(x)
|Center(x)|

Precision(x) = 2 · Spread(x)√
n

One-sample summary statistics work best for unimodal distributions and distributions with low dispersion.

Center(x)1 estimates the central (average) value of the distribution. For normal distributions, it matches
both the mean and the median. It outperforms traditional estimators in practical use. Compared to Mean,
Center is much more robust (tolerates almost one-third of outliers). Compared to Median, Center is much
more efficient and requires 1.5 times fewer observations to achieve the same precision.

Spread(x)2 estimates distribution dispersion (variability or scatter). It measures the median absolute differ-
ence between two random sample elements. This measure offers a practical alternative to standard deviation
(StdDev) and median absolute deviation (MAD). Compared to StdDev, Spread is more robust (standard
deviation breaks with a single extreme value) and has comparable efficiency under normality. Compared to
MAD, Spread is much more efficient under normality and requires 2.35 times fewer observations to achieve
the same precision.

Volatility(x) estimates the relative dispersion of the distribution. Convenient to express in percentage: e.g.,
a value of 0.2 means 20% relative to Center(x). Volatility is scale-invariant, which makes an experiment
design more portable.

Precision(x) estimates the distance between two Center estimations of independent random samples. The
interval Center(x) ± Precision(x) forms a range that contains the true center value with high confidence.
For even higher confidence, use Center(x) ± 2 · Precision(x) or Center(x) ± 3 · Precision(x).

These estimators build on Median(x)3. To find the median, x must first be arranged into a sorted sample4:
(x(1), . . . , x(n)). In this ordered sequence, x(1) represents the smallest value and x(n) the largest. The median
then becomes the middle value of this sorted sample. When the sample size is even, the median equals the
average of the two middle values:

Median(x) =
{
x((n+1)/2) if n is odd
x(n/2)+x(n/2+1)

2 if n is even
1Also known as the Hodges–Lehmann location estimator, see [HL63], [Sen63]
2Also known as the Shamos scale estimator, see [Sha76]
3Also known as sample median
4Also known as order statistics
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1.2 Two-Sample Summary

Consider a second sample y of m real numbers: y = (y1, . . . , ym). Estimators to compare x and y:

MedShift(x,y) = Median
1≤i≤n, 1≤j≤m

(xi − yj)

MedRatio(x,y) = Median
1≤i≤n, 1≤j≤m

(
xi

yj

)

MedSpread(x,y) = n Spread(x) +mSpread(y)
n+m

MedDisparity(x,y) = MedShift(x,y)
MedSpread(x,y)

These estimators work best for unimodal or narrow distributions, capturing the typical differences between
x and y.
MedShift(x,y)5 estimates the median absolute difference between elements of x and y. It answers “by how
much does x typically exceed y?” in the original units. The sign matters: positive means x is typically larger,
negative means y is typically larger. E.g., MedShift of −5 means that in 50% of (xi, yj) pairs, yj − xi > 5.
MedRatio(x,y)6 estimates the median ratio of x elements to y elements. It answers “what’s the typical
ratio between x and y?” as a multiplier. For example, MedRatio = 1.2 means that in 50% of (xi, yj) pairs,
xi is larger than yj by at least 20%. Express as percentage change: (MedRatio −1) × 100%. MedRatio is
scale-invariant, which makes an experiment design more portable.
MedSpread(x,y) estimates the averaged variability when considering both samples together. The measure
computes the weighted average of individual spreads, where larger samples contribute more. This value
primarily serves as a scaling factor for MedDisparity. It represents the typical variability in the combined
data and works best for distributions with similar dispersion values.
MedDisparity(x,y)7 estimates a normalized absolute difference between x and y expressed in standardized
spread units. Negative values are treated similarly to MedShift(x,y). MedDisparity is scale-invariant, which
makes an experiment design more portable.

2 Estimators

This section explains each estimator’s key properties, selection rationale, and advantages over traditional
methods.

2.1 Center

Center(x) = Median
1≤i≤j≤n

(
xi + xj

2

)
Practical Recommendations

Center provides an initial insight into the magnitude of sample values. When Volatility is small, the whole
sample can be approximated by the Center value.
Key Facts

5Also known as the Hodges–Lehmann shift estimator
6Inspired by the Hodges–Lehmann estimator
7A robust alternative to traditional effect size measures like Cohen’s d
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• Measures central tendency (the average value)
• Domain: any real numbers
• Equals the Hodges-Lehmann estimator ([HL63], [Sen63]), renamed to “Center” for clarity
• Called pseudomedian in some texts because it is consistent with the median for symmetric distributions
• Asymptotic Gaussian efficiency: ≈ 96%; finite-sample Gaussian efficiency > 91%
• Asymptotic breakdown point: ≈ 29%

Comparison

• Compared to the mean: more robust (tolerates almost one-third of outliers) and has comparable
efficiency under normality

• Compared to the median: more efficient under normality and requires 1.5 times fewer observations for
the same precision

Properties

Center(x + k) = Center(x) + k

Center(k · x) = k · Center(x)

2.2 Spread

Spread(x) = Median
i<j

|xi − xj |

Practical Recommendations

Spread provides an initial insight into the dispersion of the sample values. Interpretation: half of |xi − xj |
is smaller than Spread(x), the other half is larger.

Key Facts

• Measures dispersion (also known as variability or scatter)
• Domain: any real numbers (for n = 1, it is convenient to use Spread(x) = 0)
• Equals the Shamos estimator ([Sha76]), renamed to “Spread” for clarity
• Asymptotic Gaussian efficiency: ≈ 86%
• Asymptotic breakdown point: ≈ 29% (matches Center in robustness)
• Asymptotic expected value for the standard normal distribution: ≈ 0.954
• Not consistent for the standard deviation under normality

Comparison

• Compared to the standard deviation: more robust (tolerates almost one-third of outliers) and has com-
parable efficiency under normality; more intuitive without requiring knowledge of normal distributions

• Compared to the median absolute deviation: more efficient under normality and requires ≈ 2.35 times
fewer observations for the same precision

Empirical Rule

For the standard normal distribution, the asymptotic 68–95–99.7 rule becomes the 66-94-99.6 rule:

• [Center(x) ± 1 · Spread(x)] covers ≈ 65.98518% of the distribution
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• [Center(x) ± 2 · Spread(x)] covers ≈ 94.35758% of the distribution
• [Center(x) ± 3 · Spread(x)] covers ≈ 99.57851% of the distribution
• [Center(x) ± 4 · Spread(x)] covers ≈ 99.98641% of the distribution
• [Center(x) ± 5 · Spread(x)] covers ≈ 99.99982% of the distribution

Properties

Spread(x + k) = Spread(x)

Spread(k · x) = |k| · Spread(x)

Spread(x) ≥ 0

2.3 Volatility

Volatility(x) = Spread(x)
|Center(x)|

Practical Recommendations

Volatility provides a scale-invariant insight into the distribution dispersion normalized by the center value.

Interpretation examples: - Volatility(x) = 1%: data clusters tightly around Center(x) with minimal variation
- Volatility(x) = 10%: moderate variation, typical values range from 90% to 110% of center - Volatility(x) =
100%: high variation, values span from near zero to twice the center

Key Facts

• Measures the relative dispersion of a sample to Center(x)
• Domain:

– Mathematical Domain: Center(x) ̸= 0
– Logical Domain: all sample elements have the same sign, sample doesn’t contain zeros
– Pragmatic Domain: non-negative values allowing up to 29% zeros

• Robust alternative to the coefficient of variation
• Scale-invariant, which makes an experiment design more portable

Properties

Volatility(k · x) = Volatility(x)

Volatility(x) ≥ 0
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2.4 Precision

Precision(x) = 2 · Spread(x)√
n

Practical Recommendations

The interval Center(x) ± k · Precision(x) contains the true center value with probability depending on k.
Select k ∈ {1, 2, 3} based on required confidence.

Low error costs: Center(x) ± Precision(x) provides a reasonable interval.
High error costs: repeat the experiment 3–5 times and use Center(x) ± 2 · Precision(x).
Critical applications: repeat the experiment 7–10 times and use Center(x) ± 3 · Precision(x).

Key Facts

• Measures how much Center(x) would fluctuate from sample to sample if samples of the same size were
repeatedly drawn under the same conditions

• Domain: any real numbers
• Can be perceived as half of a confidence interval with high confidence level

Properties

Precision(x + k) = Precision(x)

Precision(k · x) = |k| · Precision(x)

Precision(x) ≥ 0

Comments on default factor of 2

Practitioners tend to perceive estimations a ± b as “the value is inside [a − b; a + b]” ignoring uncertainty.
The unscaled interval Center(x) ± Spread(x)/

√
n covers the true distribution center value only in ≈ 65% of

cases. To reduce risks of misinterpretation of Center(x) ± Precision(x), it is reasonable to use the default
factor for Precision(x) to ensure high coverage of such intervals for the true distribution center value. For
simpler calculations, it’s convenient to use natural numbers as scale factors for Precision(x). The factor of 2
is chosen since it’s the smallest natural number that ensures decent coverage. Natural coefficients k produce
a standardized discrete precision scale with values of k · Precision(x) or 2k · Spread(x)/

√
n.

Relation between Precision and Confidence Intervals

In the strict normal model, it’s convenient to express precision via the standard error (the standard deviation
divided by the square root of sample size). The standard error can be scaled to the margin of error (half of a
confidence interval) for the given confidence level. Choosing between confidence levels — 95%, 99%, 99.9%,
or even 89%8 — remains arbitrary. Practitioners struggle to extract insights from confidence intervals and
levels without calculation tools. This difficulty leads to frequent misinterpretation because no standard exists
for choosing levels. Knowing one confidence interval determines all others through constant relationships, yet
practitioners report two numbers (interval size and confidence level) that are hard to comprehend together.
A single standardized value would serve practitioners better.

A standardized value simplifies reporting and improves consistency. A memorable definition enables mental
calculation without advanced tools. Practitioners develop intuition through repeated use.

8See https://github.com/easystats/bayestestR/discussions/250
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Precision has no direct mapping into traditional confidence intervals. Confidence intervals ensure the declared
coverage rate only under perfect normality. Real data provides no guarantees that a 99% confidence interval
actually covers the true value in 99% of experiments. The table below shows the translation from Center(x)±
k · Precision(x) to confidence levels under normality:

n k=1 k=2 k=3
2 0.78364 0.88862 0.92534
3 0.88660 0.96741 0.98507
4 0.89523 0.98145 0.99413
5 0.88560 0.97826 0.99282
6 0.90069 0.98674 0.99675
7 0.90220 0.98965 0.99803
8 0.90802 0.99175 0.99861
9 0.91230 0.99368 0.99917

10 0.91461 0.99483 0.99946
11 0.91687 0.99556 0.99960
12 0.91886 0.99626 0.99973
13 0.92022 0.99678 0.99980
14 0.92156 0.99714 0.99984
15 0.92291 0.99748 0.99988
16 0.92384 0.99770 0.99991
17 0.92447 0.99796 0.99993
18 0.92534 0.99813 0.99994
19 0.92629 0.99828 0.99995
20 0.92691 0.99841 0.99996
21 0.92720 0.99853 0.99997
22 0.92780 0.99864 0.99998
23 0.92817 0.99871 0.99998
24 0.92889 0.99879 0.99998
25 0.92916 0.99883 0.99998
26 0.92945 0.99892 0.99999
27 0.92979 0.99897 0.99999
28 0.93006 0.99902 0.99999
29 0.93029 0.99907 0.99999
30 0.93051 0.99909 0.99999

2.5 MedShift

MedShift(x,y) = Median
1≤i≤n, 1≤j≤m

(xi − yj)

Practical Recommendations

MedShift provides an initial insight into the absolute difference between elements of two samples. Inter-
pretation: half of xi − yj is smaller than MedShift(x,y), the other half is larger. For samples with small
Volatility, MedShift(x,y) approximates pairwise differences xi − yj .

Key Facts

• Measures the median absolute difference between elements of two samples
• Domain: any real numbers
• Equals the Hodges-Lehmann estimator for two samples ([HL63])
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Properties

MedShift(x + kx,y + ky) = MedShift(x,y) + kx−ky

MedShift(k · x, k · y) = k · MedShift(x,y)

MedShift(x,y) = − MedShift(y,x)

2.6 MedRatio

MedRatio(x,y) = Median
1≤i≤n, 1≤j≤m

(
xi

yj

)
Practical Recommendations

MedRatio provides an initial insight into the ratio between elements of two samples expressed as a multi-
plicative factor. It answers “how many times larger is x compared to y?” E.g., MedRatio = 2.0 means that
for 50% of pairs (xi, yj), xi is at least twice as large as yj .

MedRatio functions as a division operator: MedRatio(x,y) computes the typical ratio x/y. Results convert
to percentage differences as (MedRatio −1) × 100%.

Key Facts

• Measures the median ratio between elements of two samples
• Domain: yj > 0
• Second sample y is always the baseline
• In general, MedRatio(x,y) ̸= 1/MedRatio(y,x) (e.g., x = (1, 100), y = (1, 10))

Properties

MedRatio(kx · x, ky · y) = kx

ky
· MedRatio(x,y)

2.7 MedSpread

MedSpread(x,y) = n Spread(x) +mSpread(y)
n+m

Practical Recommendations

MedSpread primarily serves as a scaling factor for MedDisparity. It represents the combined dispersion of
both samples, weighted by sample size. Works best for distributions with similar dispersion values.

Key Facts

• Measures average dispersion across two samples
• Domain: any real numbers
• Provides a robust alternative to the pooled standard deviation
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Properties

MedSpread(x,x) = Spread(x)

MedSpread(k1 · x, k2 · x) = |k1| + |k2|
2 · Spread(x)

MedSpread(x,y) = MedSpread(y,x)

MedSpread(k · x, k · y) = |k| · MedSpread(x,y)

2.8 MedDisparity

MedDisparity(x,y) = MedShift(x,y)
MedSpread(x,y)

Practical Recommendations

MedDisparity provides a scale-invariant insight into the absolute difference between elements of two samples,
expressed in standardized spread units.
Key Facts

• Measures a normalized absolute difference between x and y expressed in standardized spread units
• Domain: MedSpread(x,y) > 0 (at least 50% of |xi − xj | and 50% of |yi − yj | are non-zeros)
• Expresses the effect size, renamed to “Disparity” for clarity
• Scale-invariant, which makes an experiment design more portable

Comparison

• Compared to Cohen’s d: more robust while maintaining efficiency under normality

Properties

MedDisparity(x + k,y + k) = MedDisparity(x,y)

MedDisparity(k ·x, k ·y) = sign(k)·MedDisparity(x,y)

MedDisparity(x,y) = − MedDisparity(y,x)

3 Studies

This section analyzes the estimators’ properties using mathematical proofs and Monte Carlo simulations.
Most proofs are adopted from various textbooks and papers, but only the most essential references are
provided.
Unlike the main part of the manual, studies require knowledge of classic statistical methods. Well-known
facts and commonly accepted notation are used without special introduction. The studies provide a deep
dive into properties of considered estimators for practitioners interested in rigorous proofs and results of
numerical simulations.
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3.1 Asymptotic Gaussian Expected Value of the Spread

This study establishes that Spread has expected value
√

2 Φ−1(0.75) ≈ 0.954 under standard normal data as
sample size increases.

The key insight is that pairwise absolute differences |Xi − Xj | from normal data converge to a known
distribution. Since Spread takes the median of these differences, its asymptotic expectation equals the
population median of |X1 −X2| where X1, X2

iid∼ N (0, 1).

Consider X1, . . . , Xn
iid∼ N (0, 1). For any fixed i ̸= j, the difference Xi −Xj has mean 0 and variance

V[Xi −Xj ] = V[Xi] + V[Xj ] = 1 + 1 = 2

because Xi and Xj are independent. Therefore

Xi −Xj ∼ N (0, 2)

Define W = (Xi − Xj)/
√

2 ∼ N (0, 1) and D = |Xi − Xj | =
√

2 |W |. The cumulative distribution function
of D for t ≥ 0 is

P[D ≤ t] = P
[
|W | ≤ t/

√
2
]

= 2Φ
(
t/

√
2
)

− 1

where Φ denotes the standard normal cumulative distribution function. The population median m of D
satisfies

2Φ
(
m/

√
2
)

− 1 = 1
2

Solving for m yields

m =
√

2 Φ−1(0.75)

The multiset of gaps {|Xi−Xj | : i < j} forms a bounded-kernel U-statistic of degree 2. U-statistic consistency
results imply that its empirical distribution converges almost surely to the law of D. The sample median of
pairwise differences thus converges in probability to m. Convergence in probability plus uniform integrability
yields convergence of expectations:

lim
n→∞

E
[
Spread(X1, . . . , Xn)

]
=

√
2 Φ−1(0.75)

or

lim
n→∞

E
[
Spread(X1, . . . , Xn)

]
≈ 0.953 873

3.2 Asymptotic Gaussian Efficiency of the Center

This study shows that Center achieves 3/π ≈ 95.5% efficiency relative to the sample mean under normality.
This high efficiency allows Center to handle outliers while maintaining near-optimal performance on normal
data.

The analysis uses U-statistic theory to derive the asymptotic distribution of Center under Gaussian data.
Let
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X1, . . . , Xn
iid∼ N (µ, σ2), n ≥ 2, σ > 0

Center(x) has translation invariance, so setting µ = 0 preserves generality. The Walsh averages are

Wij = Xi +Xj

2 , 1 ≤ i ≤ j ≤ n

Since Xi +Xj ∼ N (0, 2σ2), it follows that

Wij ∼ N
(
0, σ2/2

)
, fW (0) = 1

σ
√
π

The estimator Center(x) equals the sample median of the
(

n+1
2

)
Walsh averages. As a U-quantile of degree

two, it satisfies

0 = 2
n(n+ 1)

∑
1≤i≤j≤n

{
1{Wij ≤ Center(x)} − 1

2

}
U-quantile theory [Sen63] provides the linear expansion

√
n Center(x) = 2

fW (0)
1√
n

n∑
i=1

ψ(Xi) + oP(1)

where

ψ(x) = P
{

x+X2
2 ≤ 0

}
− 1

2 = 1
2 − Φ

(
x
σ

)
and Φ is the standard normal cumulative distribution function. Since X1/σ ∼ N (0, 1),

V
[
ψ(X1)

]
=

∫ ∞

−∞

(
1
2 − Φ(u)

)2
φ(u) du = 1

12

with φ the standard normal probability density function. Substituting V[ψ(X1)] and fW (0) yields

V
[√
n Center(x)

]
=

4 · 1
12(

1/(σ
√
π)

)2 = πσ2

3

so

√
n Center(x) d−→ N

(
0, πσ2

3

)
, n → ∞

The sample mean has asymptotic variance σ2/n, hence the asymptotic Gaussian efficiency of Center is

effN ,∞(Center) = σ2/n

πσ2/(3n) = 3
π

≈ 0.954 930

Thus matching the mean’s precision under normality requires only 1/0.955 ≈ 1.05 times as many observa-
tions, a negligible price for the Center’s 29% breakdown point and much stronger resistance to outliers.
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3.3 Asymptotic Gaussian Efficiency of the Median

This study shows that the sample median achieves only 2/π ≈ 63.7% efficiency relative to the sample mean
under normality.

The analysis applies classical asymptotic theory for sample quantiles to derive the limiting distribution of
the median under Gaussian data. Consider

X1, . . . , Xn
iid∼ N (µ, σ2), n ≥ 2, σ > 0

Since the sample median is translation invariant, set µ = 0 without loss of generality. Write

Mn = Median(X1, . . . , Xn)

For any continuous distribution with density f positive at its median θ, classical theory ([SSH99], [Ser09])
gives

√
n (Mn − θ) d−→ N

(
0, 1

4f(θ)2

)
In the normal case θ = 0 and

f(0) = 1
σ

√
2π

so the asymptotic variance becomes

1
4f(0)2 = 1

4
(
σ

√
2π

)2 = πσ2

2

Hence

√
nMn

d−→ N
(

0, πσ
2

2

)
, n → ∞

The sample mean has asymptotic variance σ2/n, so the asymptotic Gaussian efficiency of the median is

effN ,∞(Median) = σ2/n

πσ2/(2n) = 2
π

≈ 0.637

Thus achieving the same precision as the mean under normality requires roughly 1/0.637 ≈ 1.57 times as
many observations when using the median. This large efficiency loss shows why we prefer the Hodges–
Lehmann Center estimator — which attains about 95.5% efficiency — whenever data are roughly Gaussian
but may include outliers.
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3.4 Asymptotic Gaussian Efficiency of the Spread

This study shows that Spread achieves approximately 86% efficiency relative to the sample standard deviation
under normality.

The analysis uses U-statistic theory to derive the asymptotic distribution of Spread as a scale estimator
under Gaussian data. Consider

X1, . . . , Xn
iid∼ N (µ, σ2), n ≥ 2, σ > 0

Since Spread(x) = Median |Xi −Xj | is translation invariant, set µ = 0 without loss of generality and write

Rn = Spread(x)

m0 =
√

2 Φ−1(0.75)σ ≈ 0.954σ

Here m0 denotes the population median of |Xi − Xj | when Xi ∼ N (0, σ2). Letting D = |X1 − X2|, its
density is

fD(t) = 1
σ

√
π

exp
(

− t2

4σ2

)
, t ≥ 0

with fD(m0) = σ−1π−1/2 exp(−Φ−1(0.75)2/2). Treating Rn as a degree-two U-quantile and applying asymp-
totic theory [Sen63] yields

√
n

(
Rn −m0

) d−→ N
(

0, 4V[ψ(X1)]
fD(m0)2

)
where

ψ(x) = P
{

|x−X2| ≤ m0
}

− 1
2

= Φ
(

x+m0
σ

)
− Φ

(
x−m0

σ

)
− 1

2

Numerical evaluation of the integral

V[ψ(X1)] =
∫ ∞

−∞
ψ(x)2 e

−x2/(2σ2)

σ
√

2π
dx

yields V[ψ(X1)] ≈ 0.0266. Substituting this value and fD(m0) into the variance formula gives

V
[√
nRn

]
≈ 0.527σ2

Because Rn is not a consistent estimator of σ, comparisons with the sample standard deviation StdDev(x)
use the rescaled statistic

σ̂Spread = Rn

m0

which is consistent. Dividing the variance above by the constant m2
0 gives
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V
[√
n σ̂Spread

]
≈ 0.579σ2

The optimal Gaussian scale estimator StdDev(x) has asymptotic variance σ2/(2n), so the asymptotic Gaus-
sian efficiency of the (scaled) Spread is

effN ,∞(Spread) = σ2/(2n)
0.579σ2/n

≈ 0.864

One needs roughly 1/0.864 ≈ 1.16 times as many observations to match the precision of the sample standard
deviation when the data are exactly normal. In exchange, Spread inherits a 29% breakdown point from its
U-quantile construction, so moderate extra data provide a substantial increase in robustness.

3.5 Asymptotic Gaussian Efficiency of the Median Absolute Deviation

This study shows that the median absolute deviation (MAD) achieves only about 37% efficiency relative to
the sample standard deviation under normality.

The analysis derives the asymptotic distribution of the MAD under Gaussian data using classical theory for
sample medians. Consider

X1, . . . , Xn
iid∼ N (µ, σ2), n ≥ 2, σ > 0

Since both the sample median and the MAD are translation invariant, set µ = 0 without loss of generality
and write

MADn = Median
(

|Xi − Median(x)| : i = 1, . . . , n
)

For a standard normal distribution, the population MAD equals

m0 = Φ−1(0.75)σ = c0 σ

c0 = Φ−1(0.75) ≈ 0.674

Dividing the empirical MAD by this constant gives a consistent scale estimator:

σ̂MAD = MADn

c0

To find its large-sample variance, observe that Yi = |Xi| has density

g(y) = 2
σ

√
2π

exp
(

− y2

2σ2

)
, y ≥ 0

whose median is m0. A classical result for sample medians of independent draws with continuous positive
density at the median ([SSH99], [Ser09]) states

√
n

(
Median(Y1, . . . , Yn) −m0

) d−→ N
(

0, 1
4g(m0)2

)
Since
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g(m0) = 2
σ

√
2π

exp
(

−c2
0
2

)
the asymptotic variance of

√
n MADn is

V
[√
n MADn

]
= 1

4g(m0)2 = πσ2 exp(c2
0)

8

Scaling by 1/c0 gives the variance of the consistent estimator:

V
[√
n σ̂MAD

]
= πσ2 exp(c2

0)
8 c2

0

The optimal Gaussian scale estimator is the sample standard deviation. It has asymptotic variance of
σ2/(2n). The asymptotic Gaussian efficiency of the (scaled) MAD is therefore

effN ,∞(MAD) = σ2/(2n)
πσ2 exp(c2

0)/(8c2
0n) = 4c2

0
π exp(c2

0)

This gives the result:

effN ,∞(MAD) ≈ 0.367 523

Achieving the same precision as the sample standard deviation under normality requires roughly 1/0.368 ≈
2.7 times as many observations when using the MAD.

3.6 Finite-Sample Efficiency of Central Tendency Estimators

This study presents finite-sample efficiency values for Center and shows how it performs better than Median
across small and medium sample sizes.
The previous studies established asymptotic efficiency values — the limiting behavior as sample size ap-
proaches infinity. For the Gaussian distribution, these asymptotic values are:

• Mean: 100% (the most efficient estimator under normality)
• Center: 3/π ≈ 95.5%
• Median: 2/π ≈ 63.7%

Asymptotic theory provides excellent approximations for large samples but may be inaccurate for small n.
Finite-sample efficiency captures the actual precision when working with limited data.
Efficiency and Sample Size Requirements

Efficiency quantifies the variance ratio between estimators. For two estimators T1 and T2 applied to the
same distribution:

eff(T1 relative to T2) = V[T2]
V[T1]

This ratio directly translates to sample size requirements. An estimator with 80% efficiency needs 100/80 =
1.25 times as many observations to achieve the same precision as the reference estimator. The Median with
its 63.7% asymptotic efficiency requires roughly 1.57 times more data than the Mean under normality.
Monte Carlo Estimation of Finite-Sample Efficiency

Numerical simulation provides exact efficiency values for any sample size. The procedure follows these steps:
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1. Generate samples: Draw m independent samples of size n from the standard normal distribution
2. Calculate estimators: Compute both estimators for each sample
3. Measure dispersion: Calculate the sample variance of the m estimator values
4. Compute efficiency: Take the variance ratio

The simulation must balance computational cost against precision. Larger m reduces Monte Carlo error but
increases computation time. For efficiency estimation, m = 106 iterations achieve enough precision.

Finite-Sample Results

The simulation reveals how efficiency evolves from small to moderate sample sizes.

The figure below shows the Gaussian efficiency curves for n ∈ {3, . . . , 100} based on m = 106 Monte Carlo
iterations (dotted lines show asymptotic values):

Key Observations

1. Small sample behavior: For n = 3, Center achieves 97.9% efficiency while Median drops to 74.3%.
Even at extreme small samples, Center maintains above 91% efficiency throughout.

2. Convergence patterns: The Center estimator reaches 94% efficiency by n = 15 and stabilizes
above 95% for n ≥ 50. The Median oscillates between 63.5% and 68% across all sample sizes, never
approaching the efficiency of Center.

3. Practical advantage: For typical applications (n = 20 to 50), Center maintains 94 − 95% efficiency.
This represents only a 5 − 6% penalty compared to Mean, while Median suffers a 35 − 37% penalty.

The toolkit’s Center estimator performs much better than Median while sacrificing minimal efficiency com-
pared to the non-robust Mean.
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3.7 Finite-Sample Efficiency of Dispersion Estimators

This study presents finite-sample efficiency values for Spread and demonstrates its consistent superiority over
the standard deviation StdDev and the median absolute deviation MAD across small and medium sample
sizes.

The previous studies established asymptotic efficiency values for dispersion estimators under the Gaussian
distribution. These asymptotic values are:

• StdDev: 100% (the most efficient estimator under normality)
• Spread: ≈ 86.4%
• MAD: ≈ 36.8%

The asymptotic values provide excellent approximations for large samples but may not accurately reflect
performance with limited data. Understanding actual efficiency at practical sample sizes guides estimator
selection from the toolkit.

Efficiency Measurement for Dispersion Estimators

Dispersion estimators face a variance-bias trade-off: different estimators have different expected values under
the same distribution. To compare their variability fairly, the simulation normalizes each estimator by its
expected value. This normalization eliminates bias differences and focuses purely on variance comparison.

The procedure follows these steps:

1. Generate samples: Draw m independent samples of size n from the standard normal distribution
2. Calculate estimators: Compute StdDev, Spread, and MAD for each sample
3. Calculate normalized variance: for each set of estimations, calculate the variance and divide by

the mean value to align estimator biases
4. Compute efficiency: Take the variance ratio relative to StdDev

This approach ensures fair comparison by measuring how much each estimator varies around its own expected
value. The simulation uses m = 106 iterations to achieve sufficient precision.

Results and Analysis

The simulation covers sample sizes n ∈ {3, . . . , 100} with efficiency computed relative to standard deviation.

The below figure shows the Gaussian efficiency curves based on 106 Monte Carlo iterations (dotted lines
show asymptotic values):
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Key Observations

1. Superior efficiency: Spread consistently outperforms MAD by a factor of two across all sample sizes.
At n = 20, Spread achieves 81.4% efficiency while MAD reaches only 39.0%.

2. Practical implications: For typical sample sizes (n = 20 to 50), Spread maintains 81−84% efficiency.
This 16 − 19% penalty compared to StdDev represents a reasonable trade-off for robustness.

3. Small sample behavior: Spread shows a characteristic dip for n = 5 − 8 (dropping to 74%) before
recovering. Even at its worst, Spread remains twice as efficient as MAD.

Spread from the toolkit provides a substantial efficiency advantage over MAD while maintaining reasonable
performance compared to the non-robust standard deviation. This efficiency advantage, combined with its
robustness properties, makes Spread the preferred choice for dispersion estimation in practical applications.
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